Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China.
Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
Microbiome. 2023 Apr 26;11(1):89. doi: 10.1186/s40168-023-01495-0.
Coral meta-organisms consist of the coral, and its associated Symbiodiniaceae (dinoflagellate algae), bacteria, and other microbes. Corals can acquire photosynthates from Symbiodiniaceae, whilst Symbiodiniaceae uses metabolites from corals. Prokaryotic microbes provide Symbiodiniaceae with nutrients and support the resilience of corals as meta-organisms. Eutrophication is a major cause of coral reef degradation; however, its effects on the transcriptomic response of coral meta-organisms remain unclear, particularly for prokaryotic microbes associated with corals in the larval stage. To understand acclimation of the coral meta-organism to elevated nitrate conditions, we analyzed the physiological and transcriptomic responses of Pocillopora damicornis larvae, an ecologically important scleractinian coral, after 5 days of exposure to elevated nitrate levels (5, 10, 20, and 40 µM).
The major differentially expressed transcripts in coral, Symbiodiniaceae, and prokaryotic microbes included those related to development, stress response, and transport. The development of Symbiodiniaceae was not affected in the 5 and 20 µM groups but was downregulated in the 10 and 40 µM groups. In contrast, prokaryotic microbe development was upregulated in the 10 and 40 µM groups and downregulated in the 5 and 20 µM groups. Meanwhile, coral larval development was less downregulated in the 10 and 40 µM groups than in the 5 and 20 µM groups. In addition, multiple larval, Symbiodiniaceae, and prokaryotic transcripts were significantly correlated with each other. The core transcripts in correlation networks were related to development, nutrient metabolism, and transport. A generalized linear mixed model, using least absolute shrinkage and selection operator, demonstrated that the Symbiodiniaceae could both benefit and cost coral larval development. Furthermore, the most significantly correlated prokaryotic transcripts maintained negative correlations with the physiological functions of Symbiodiniaceae.
Results suggested that Symbiodiniaceae tended to retain more nutrients under elevated nitrate concentrations, thereby shifting the coral-algal association from mutualism towards parasitism. Prokaryotic microbes provided Symbiodiniaceae with essential nutrients and may control Symbiodiniaceae growth through competition, whereby prokaryotes can also restore coral larval development inhibited by Symbiodiniaceae overgrowth. Video Abstract.
珊瑚元生物体由珊瑚及其相关的共生藻类(甲藻)、细菌和其他微生物组成。珊瑚可以从共生藻类中获取光合作用产物,而共生藻类则利用珊瑚的代谢产物。原核微生物为共生藻类提供营养,并支持珊瑚作为元生物体的恢复力。富营养化是珊瑚礁退化的主要原因之一;然而,其对珊瑚元生物体转录组响应的影响尚不清楚,特别是对于与珊瑚幼虫阶段相关的原核微生物。为了了解珊瑚元生物体对硝酸盐升高条件的适应,我们分析了在暴露于升高的硝酸盐水平(5、10、20 和 40 μM)5 天后,重要的石珊瑚珊瑚虫幼虫(Pocillopora damicornis)的生理和转录组响应。
珊瑚、共生藻类和原核微生物中主要差异表达的转录本包括与发育、应激反应和运输相关的转录本。在 5 和 20 μM 组中,共生藻类的发育不受影响,但在 10 和 40 μM 组中下调。相比之下,在 10 和 40 μM 组中原核微生物的发育上调,而在 5 和 20 μM 组中下调。同时,珊瑚幼虫的发育在 10 和 40 μM 组中比在 5 和 20 μM 组中下调较少。此外,多个幼虫、共生藻类和原核转录本彼此之间存在显著相关性。相关网络中的核心转录本与发育、营养代谢和运输有关。广义线性混合模型,使用最小绝对收缩和选择算子,表明共生藻类既可以受益于珊瑚幼虫的发育,也可以损害珊瑚幼虫的发育。此外,与生理功能相关性最强的原核转录本与共生藻类的相关性呈负相关。
结果表明,共生藻类在升高的硝酸盐浓度下倾向于保留更多的营养物质,从而使珊瑚-藻类共生关系从互利共生转变为寄生关系。原核微生物为共生藻类提供必需的营养物质,并可能通过竞争来控制共生藻类的生长,从而原核微生物也可以恢复因共生藻类过度生长而受到抑制的珊瑚幼虫发育。