State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100094, China.
State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China.
Mol Plant. 2023 Jun 5;16(6):1031-1047. doi: 10.1016/j.molp.2023.04.011. Epub 2023 Apr 26.
Excessive accumulation of chloride (Cl) in the aboveground tissues under saline conditions is harmful to crops. Increasing the exclusion of Cl from shoots promotes salt tolerance in various crops. However, the underlying molecular mechanisms remain largely unknown. In this study, we demonstrated that a type A response regulator (ZmRR1) modulates Cl exclusion from shoots and underlies natural variation of salt tolerance in maize. ZmRR1 negatively regulates cytokinin signaling and salt tolerance, likely by interacting with and inhibiting His phosphotransfer (HP) proteins that are key mediators of cytokinin signaling. A naturally occurring non-synonymous SNP variant enhances the interaction between ZmRR1 and ZmHP2, conferring maize plants with a salt-hypersensitive phenotype. We found that ZmRR1 undergoes degradation under saline conditions, leading to the release of ZmHP2 from ZmRR1 inhibition, and subsequently ZmHP2-mediated signaling improves salt tolerance primarily by promoting Cl exclusion from shoots. Furthermore, we showed that ZmMATE29 is transcriptionally upregulated by ZmHP2-mediated signaling under highly saline conditions and encodes a tonoplast-located Cl transporter that promotes Cl exclusion from shoots by compartmentalizing Cl into the vacuoles of root cortex cells. Collectively, our study provides an important mechanistic understanding of the cytokinin signaling-mediated promotion of Cl exclusion from shoots and salt tolerance and suggests that genetic modification to promote Cl exclusion from shoots is a promising route for developing salt-tolerant maize.
在盐胁迫条件下,地上组织中氯离子(Cl)的过度积累对作物有害。增加地上部分 Cl 的外排可促进各种作物的耐盐性。然而,其潜在的分子机制在很大程度上仍然未知。在这项研究中,我们证明了一种 A 型响应调节蛋白(ZmRR1)调节 Cl 从地上部分的外排,并构成玉米耐盐性的自然变异基础。ZmRR1 负调控细胞分裂素信号和耐盐性,可能通过与和抑制细胞分裂素信号的关键介质 His 磷酸转移(HP)蛋白相互作用来实现。一种自然发生的非同义 SNP 变异增强了 ZmRR1 与 ZmHP2 的相互作用,赋予玉米植株盐敏感表型。我们发现 ZmRR1 在盐胁迫条件下发生降解,导致 ZmHP2 从 ZmRR1 抑制中释放出来,随后 ZmHP2 介导的信号转导通过将 Cl 分隔到根皮层细胞的液泡中来提高盐耐受性,主要是通过促进 Cl 从地上部分的外排。此外,我们表明 ZmMATE29 在高盐条件下受 ZmHP2 介导的信号转导转录上调,并编码一个液泡膜定位的 Cl 转运蛋白,通过将 Cl 分隔到根皮层细胞的液泡中来促进 Cl 从地上部分的外排。总的来说,我们的研究提供了对细胞分裂素信号转导促进 Cl 从地上部分的外排和耐盐性的重要机制理解,并表明促进 Cl 从地上部分的外排的遗传修饰是开发耐盐玉米的有前途的途径。