Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
Departments of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA.
Aging Cell. 2023 Jul;22(7):e13852. doi: 10.1111/acel.13852. Epub 2023 Apr 26.
Perturbed metabolism of ammonia, an endogenous cytotoxin, causes mitochondrial dysfunction, reduced NAD /NADH (redox) ratio, and postmitotic senescence. Sirtuins are NAD -dependent deacetylases that delay senescence. In multiomics analyses, NAD metabolism and sirtuin pathways are enriched during hyperammonemia. Consistently, NAD -dependent Sirtuin3 (Sirt3) expression and deacetylase activity were decreased, and protein acetylation was increased in human and murine skeletal muscle/myotubes. Global acetylomics and subcellular fractions from myotubes showed hyperammonemia-induced hyperacetylation of cellular signaling and mitochondrial proteins. We dissected the mechanisms and consequences of hyperammonemia-induced NAD metabolism by complementary genetic and chemical approaches. Hyperammonemia inhibited electron transport chain components, specifically complex I that oxidizes NADH to NAD , that resulted in lower redox ratio. Ammonia also caused mitochondrial oxidative dysfunction, lower mitochondrial NAD -sensor Sirt3, protein hyperacetylation, and postmitotic senescence. Mitochondrial-targeted Lactobacillus brevis NADH oxidase (MitoLbNOX), but not NAD+ precursor nicotinamide riboside, reversed ammonia-induced oxidative dysfunction, electron transport chain supercomplex disassembly, lower ATP and NAD content, protein hyperacetylation, Sirt3 dysfunction and postmitotic senescence in myotubes. Even though Sirt3 overexpression reversed ammonia-induced hyperacetylation, lower redox status or mitochondrial oxidative dysfunction were not reversed. These data show that acetylation is a consequence of, but is not the mechanism of, lower redox status or oxidative dysfunction during hyperammonemia. Targeting NADH oxidation is a potential approach to reverse and potentially prevent ammonia-induced postmitotic senescence in skeletal muscle. Since dysregulated ammonia metabolism occurs with aging, and NAD biosynthesis is reduced in sarcopenia, our studies provide a biochemical basis for cellular senescence and have relevance in multiple tissues.
氨的代谢紊乱是一种内源性细胞毒素,会导致线粒体功能障碍、NAD/NADH(氧化还原)比值降低和有丝分裂后衰老。Sirtuins 是依赖 NAD 的去乙酰化酶,可延缓衰老。在多组学分析中,氨血症时 NAD 代谢和 Sirtuin 途径富集。一致地,人源和鼠源骨骼肌/肌管中 NAD 依赖性 Sirtuin3(Sirt3)表达和去乙酰化酶活性降低,蛋白乙酰化增加。乙酰化组学和肌管的亚细胞成分显示氨血症诱导的细胞信号和线粒体蛋白过度乙酰化。我们通过互补的遗传和化学方法来剖析氨血症诱导的 NAD 代谢的机制和后果。氨血症抑制电子传递链成分,特别是将 NADH 氧化为 NAD+的复合物 I,导致氧化还原比值降低。氨血症还导致线粒体氧化功能障碍、降低线粒体 NAD 传感器 Sirt3、蛋白过度乙酰化和有丝分裂后衰老。靶向线粒体的短乳杆菌 NADH 氧化酶(MitoLbNOX),而不是 NAD+前体烟酰胺核苷,可逆转氨诱导的氧化功能障碍、电子传递链超级复合物解体、ATP 和 NAD 含量降低、蛋白过度乙酰化、Sirt3 功能障碍和肌管的有丝分裂后衰老。尽管 Sirt3 过表达逆转了氨诱导的过度乙酰化,但氧化还原状态或线粒体氧化功能障碍并未逆转。这些数据表明,乙酰化是氨血症时氧化还原状态或氧化功能障碍的结果,但不是其机制。靶向 NADH 氧化可能是逆转和预防骨骼肌氨诱导的有丝分裂后衰老的一种潜在方法。由于氨代谢失调发生在衰老过程中,并且在肌肉减少症中 NAD 生物合成减少,因此我们的研究为细胞衰老提供了生化基础,并与多种组织相关。