文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

受压下的超原子金(SCH)纳米团簇

Superatomic Au(SCH) Nanocluster under Pressure.

作者信息

Tang Qing, Li Fuhua, Jiang De-En

机构信息

School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.

Department of Chemistry, University of California, Riverside, California 92521, United States.

出版信息

ACS Nanosci Au. 2021 Oct 26;2(1):40-48. doi: 10.1021/acsnanoscienceau.1c00024. eCollection 2022 Feb 16.


DOI:10.1021/acsnanoscienceau.1c00024
PMID:37101514
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10114650/
Abstract

The past decade has witnessed significant advances in the synthesis and structure determination of atomically precise metal nanoclusters. However, little is known about the condensed matter properties of these nanosized metal nanoclusters packed in a crystal lattice under high pressure. Here using density functional theory calculations, we simulate the crystal of a representative superatomic gold cluster, Au(SR) (R = CH), under various pressures. At ambient conditions, Au(SCH) clusters are packed in a crystal via dispersion interactions; being a 7e superatom, each cluster carries a magnetic moment of 1 μ or one unpaired electron. Upon increasing compression (from 10 to 110 GPa), we observe the formation of intercluster Au-Au, Au-S, and S-S covalent bonds between staple motifs, thereby linking the clusters into a network. The pressure-induced structural change is accompanied by the vanishment of the magnetic moment and the semiconductor-to-metal transition. Our work shows that subjecting crystals of atomically precise metal nanoclusters to high pressures could lead to new crystalline states and physical properties.

摘要

在过去十年中,原子精确的金属纳米团簇的合成和结构测定取得了重大进展。然而,对于这些在高压下堆积在晶格中的纳米尺寸金属纳米团簇的凝聚态性质却知之甚少。在此,我们使用密度泛函理论计算,模拟了具有代表性的超原子金团簇Au(SR) (R = CH)在各种压力下的晶体结构。在环境条件下,Au(SCH) 团簇通过色散相互作用堆积在晶体中;作为一个7e超原子,每个团簇具有1 μ的磁矩或一个未配对电子。随着压缩程度的增加(从10 GPa到110 GPa),我们观察到在主链基序之间形成了团簇间的Au-Au、Au-S和S-S共价键,从而将团簇连接成一个网络。压力诱导的结构变化伴随着磁矩的消失和半导体到金属的转变。我们的工作表明,对原子精确的金属纳米团簇晶体施加高压可能会导致新的晶体状态和物理性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/10114650/20975b48bee0/ng1c00024_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/10114650/5d378de91dd2/ng1c00024_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/10114650/d3fb039e54f6/ng1c00024_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/10114650/8062350be31e/ng1c00024_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/10114650/88c6a867df08/ng1c00024_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/10114650/e173266c6d4c/ng1c00024_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/10114650/c8a9bb2fc508/ng1c00024_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/10114650/54508be48490/ng1c00024_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/10114650/99d1f2d09dc8/ng1c00024_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/10114650/278764d0c808/ng1c00024_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/10114650/11342e0afd59/ng1c00024_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/10114650/20975b48bee0/ng1c00024_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/10114650/5d378de91dd2/ng1c00024_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/10114650/d3fb039e54f6/ng1c00024_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/10114650/8062350be31e/ng1c00024_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/10114650/88c6a867df08/ng1c00024_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/10114650/e173266c6d4c/ng1c00024_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/10114650/c8a9bb2fc508/ng1c00024_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/10114650/54508be48490/ng1c00024_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/10114650/99d1f2d09dc8/ng1c00024_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/10114650/278764d0c808/ng1c00024_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/10114650/11342e0afd59/ng1c00024_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/10114650/20975b48bee0/ng1c00024_0011.jpg

相似文献

[1]
Superatomic Au(SCH) Nanocluster under Pressure.

ACS Nanosci Au. 2021-10-26

[2]
Insights into Interfaces, Stability, Electronic Properties, and Catalytic Activities of Atomically Precise Metal Nanoclusters from First Principles.

Acc Chem Res. 2018-11-20

[3]
Electrochemistry of Atomically Precise Metal Nanoclusters.

Acc Chem Res. 2019-1-15

[4]
From superatomic Au25(SR)18(-) to superatomic M@Au24(SR)18(q) core-shell clusters.

Inorg Chem. 2009-4-6

[5]
Nuclear and Electron Magnetic Resonance Spectroscopies of Atomically Precise Gold Nanoclusters.

Acc Chem Res. 2019-1-15

[6]
Manifestation of the interplay between spin-orbit and Jahn-Teller effects in Au superatom UV-Vis fingerprint spectra.

Chem Sci. 2023-4-11

[7]
[Au (SR) ] , As Smaller 8-Electron Gold Nanocluster Retaining an SP -Core. Evaluation of Bonding and Optical Properties from Relativistic DFT Calculations.

Chemphyschem. 2018-4-26

[8]
Au(SR): the captain of the great nanocluster ship.

Nanoscale. 2018-6-14

[9]
Total structural determination of alloyed AuCu(S-Adm) nanoclusters with double superatomic chains.

Chem Commun (Camb). 2021-2-25

[10]
Self-promoted solid-state covalent networking of Au(SR) through reversible disulfide bonds. A critical effect of the nanocluster in oxidation processes.

Nanoscale. 2021-6-14

本文引用的文献

[1]
Synthesizing Photoluminescent Au (SCH Ph- Bu) Nanoclusters with Structural Features by Using a Combined Method.

Angew Chem Int Ed Engl. 2021-8-9

[2]
Thermochromism and piezochromism of an atomically precise high-nuclearity silver sulfide nanocluster.

Chem Commun (Camb). 2021-3-7

[3]
Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures.

Chem Rev. 2021-1-27

[4]
Pressure-Induced Optical Transitions in Metal Nanoclusters.

ACS Nano. 2020-9-22

[5]
Atomically precise alloy nanoclusters: syntheses, structures, and properties.

Chem Soc Rev. 2020-9-7

[6]
Tuning the properties of atomically precise gold nanoclusters for biolabeling and drug delivery.

Chem Commun (Camb). 2020-8-4

[7]
Engineering ultrasmall metal nanoclusters for photocatalytic and electrocatalytic applications.

Nanoscale. 2019-10-28

[8]
Renal clearable catalytic gold nanoclusters for in vivo disease monitoring.

Nat Nanotechnol. 2019-9-2

[9]
Superconductivity at 250 K in lanthanum hydride under high pressures.

Nature. 2019-5-22

[10]
Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties.

Chem Rev. 2020-1-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索