Suppr超能文献

用于全矢量弹性波的拓扑材料。

Topological materials for full-vector elastic waves.

作者信息

Wu Ying, Lu Jiuyang, Huang Xueqin, Yang Yating, Luo Li, Yang Linyun, Li Feng, Deng Weiyin, Liu Zhengyou

机构信息

School of Physics and Optoelectronics and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou510640, China.

Institute of Solid Mechanics, Midea Corporate Research Center, Midea Group, Foshan528311, China.

出版信息

Natl Sci Rev. 2022 Sep 24;10(5):nwac203. doi: 10.1093/nsr/nwac203. eCollection 2023 May.

Abstract

Elastic wave manipulation is important in a wide variety of applications, including information processing in small elastic devices and noise control in large solid structures. The recent emergence of topological materials has opened new avenues for modulating elastic waves in solids. However, because of the full-vector feature and the complicated couplings of the longitudinal and transverse components of elastic waves, manipulating elastic waves is generally difficult compared with manipulating acoustic waves (scalar waves) and electromagnetic waves (vectorial waves but transverse only). To date, topological materials, including insulators and semimetals, have been used for acoustic and electromagnetic waves. Although topological materials with elastic waves have also been reported, the observed topological edge modes lie on the domain wall. A natural question arises: Is there an elastic metamaterial with topological edge modes on its own boundary? Here, we report a 3D metal-printed bilayer metamaterial that topologically insulates elastic waves. By introducing chiral interlayer couplings, the spin-orbit couplings for elastic waves are induced, which give rise to nontrivial topological properties. Helical edge states with vortex features were demonstrated on the boundary of the single topological phase. We further show a heterostructure of the metamaterial that exhibits tunable edge transport. Our findings could be used in devices based on elastic waves in solids.

摘要

弹性波操控在多种应用中都很重要,包括小型弹性器件中的信息处理以及大型固体结构中的噪声控制。拓扑材料的近期出现为调控固体中的弹性波开辟了新途径。然而,由于弹性波的全矢量特性以及纵向和横向分量的复杂耦合,与操控声波(标量波)和电磁波(仅横向的矢量波)相比,操控弹性波通常较为困难。迄今为止,包括绝缘体和半金属在内的拓扑材料已被用于声波和电磁波。尽管也有关于具有弹性波的拓扑材料的报道,但所观察到的拓扑边缘模式位于畴壁上。一个自然的问题出现了:是否存在一种在其自身边界上具有拓扑边缘模式的弹性超材料?在此,我们报道了一种通过3D金属打印的双层超材料,它能对弹性波进行拓扑绝缘。通过引入手性层间耦合,诱导出了弹性波的自旋轨道耦合,从而产生了非平凡的拓扑性质。在单一拓扑相的边界上展示了具有涡旋特征的螺旋边缘态。我们进一步展示了该超材料的一种异质结构,其表现出可调谐的边缘输运。我们的研究结果可应用于基于固体中弹性波的器件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a56b/10124969/5fc0026b430e/nwac203fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验