Toulson Benjamin W, Hait Diptarka, Faccialà Davide, Neumark Daniel M, Leone Stephen R, Head-Gordon Martin, Gessner Oliver
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Department of Chemistry, University of California, Berkeley, California 94720, USA.
J Chem Phys. 2023 Jul 21;159(3). doi: 10.1063/5.0151629.
The UV photochemistry of small heteroaromatic molecules serves as a testbed for understanding fundamental photo-induced chemical transformations in moderately complex compounds, including isomerization, ring-opening, and molecular dissociation. Here, a combined experimental-theoretical study of 268 nm UV light-induced dynamics in 2-iodothiophene (C4H3IS) is performed. The dynamics are experimentally monitored with a femtosecond extreme ultraviolet (XUV) probe that measures iodine N-edge 4d core-to-valence transitions. Experiments are complemented by density functional theory calculations of both the pump-pulse induced valence excitations and the XUV probe-induced core-to-valence transitions. Possible intramolecular relaxation dynamics are investigated by ab initio molecular dynamics simulations. Gradual absorption changes up to ∼0.5 to 1 ps after excitation are observed for both the parent molecular species and emerging iodine fragments, with the latter appearing with a characteristic rise time of 160 ± 30 fs. Comparison of spectral intensities and energies with the calculations identifies an iodine dissociation pathway initiated by a predominant π → π* excitation. In contrast, initial excitation to a nearby n⟂ → σ* state appears unlikely based on a significantly smaller oscillator strength and the absence of any corresponding XUV absorption signatures. Excitation to the π → π* state is followed by contraction of the C-I bond, enabling a nonadiabatic transition to a dissociative π→σC-I* state. For the subsequent fragmentation, a relatively narrow bond-length region along the C-I stretch coordinate between 230 and 280 pm is identified, where the transition between the parent molecule and the thienyl radical + iodine atom products becomes prominent in the XUV spectrum due to rapid localization of two singly occupied molecular orbitals on the two fragments.
小型杂环芳烃分子的紫外光化学可作为一个试验台,用于理解中等复杂化合物中基本的光致化学转变,包括异构化、开环和分子解离。在此,对2-碘噻吩(C4H3IS)在268 nm紫外光诱导下的动力学进行了实验与理论相结合的研究。通过测量碘N边4d芯到价跃迁的飞秒极紫外(XUV)探针实验监测动力学过程。通过对泵浦脉冲诱导的价态激发和XUV探针诱导的芯到价跃迁进行密度泛函理论计算,对实验进行补充。通过从头算分子动力学模拟研究了可能的分子内弛豫动力学。对于母体分子物种和新出现的碘碎片,在激发后高达约0.5至1皮秒的时间内都观察到了逐渐的吸收变化,后者以160±30飞秒的特征上升时间出现。将光谱强度和能量与计算结果进行比较,确定了由主要的π→π激发引发的碘解离途径。相比之下,基于明显更小的振子强度以及没有任何相应的XUV吸收特征,初始激发到附近的n⟂→σ态似乎不太可能。激发到π→π态后,C-I键收缩,使得能够非绝热跃迁到解离的π→σC-I态。对于随后的碎片化过程,确定了沿着C-I伸缩坐标在230至280皮米之间的一个相对较窄的键长区域,由于两个单占据分子轨道在两个碎片上的快速定位,母体分子与噻吩基自由基 + 碘原子产物之间的跃迁在XUV光谱中变得显著。