Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijón, Spain.
Department of Anatomical Pathology, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijón, Spain.
Int J Mol Sci. 2023 Apr 10;24(8):7022. doi: 10.3390/ijms24087022.
Usually, after an abnormal level of serum prostate-specific antigen (PSA) or digital rectal exam, men undergo a prostate needle biopsy. However, the traditional sextant technique misses 15-46% of cancers. At present, there are problems regarding disease diagnosis/prognosis, especially in patients' classification, because the information to be handled is complex and challenging to process. Matrix metalloproteases (MMPs) have high expression by prostate cancer (PCa) compared with benign prostate tissues. To assess the possible contribution to the diagnosis of PCa, we evaluated the expression of several MMPs in prostate tissues before and after PCa diagnosis using machine learning, classifiers, and supervised algorithms. A retrospective study was conducted on 29 patients diagnosed with PCa with previous benign needle biopsies, 45 patients with benign prostatic hyperplasia (BHP), and 18 patients with high-grade prostatic intraepithelial neoplasia (HGPIN). An immunohistochemical study was performed on tissue samples from tumor and non-tumor areas using specific antibodies against MMP -2, 9, 11, and 13, and the tissue inhibitor of MMPs -3 (TIMP-3), and the protein expression by different cell types was analyzed to which several automatic learning techniques have been applied. Compared with BHP or HGPIN specimens, epithelial cells (ECs) and fibroblasts from benign prostate biopsies before the diagnosis of PCa showed a significantly higher expression of MMPs and TIMP-3. Machine learning techniques provide a differentiable classification between these patients, with greater than 95% accuracy, considering ECs, being slightly lower when considering fibroblasts. In addition, evolutionary changes were found in paired tissues from benign biopsy to prostatectomy specimens in the same patient. Thus, ECs from the tumor zone from prostatectomy showed higher expressions of MMPs and TIMP-3 compared to ECs of the corresponding zone from the benign biopsy. Similar differences were found for expressions of MMP-9 and TIMP-3, between fibroblasts from these zones. The classifiers have determined that patients with benign prostate biopsies before the diagnosis of PCa showed a high MMPs/TIMP-3 expression by ECs, so in the zone without future cancer development as in the zone with future tumor, compared with biopsy samples from patients with BPH or HGPIN. Expression of MMP -2, 9, 11, and 13, and TIMP-3 phenotypically define ECs associated with future tumor development. Also, the results suggest that MMPs/TIMPs expression in biopsy tissues may reflect evolutionary changes from prostate benign tissues to PCa. Thus, these findings in combination with other parameters might contribute to improving the suspicion of PCa diagnosis.
通常,在血清前列腺特异性抗原(PSA)水平异常或直肠指检后,男性会进行前列腺针吸活检。然而,传统的六分法技术会错过 15-46%的癌症。目前,在疾病诊断/预后方面存在问题,尤其是在患者分类方面,因为要处理的信息复杂且难以处理。与良性前列腺组织相比,基质金属蛋白酶(MMPs)在前列腺癌(PCa)中有高表达。为了评估其对 PCa 诊断的可能贡献,我们使用机器学习、分类器和监督算法评估了 PCa 诊断前后前列腺组织中几种 MMPs 的表达。对 29 例先前良性针吸活检诊断为 PCa 的患者、45 例良性前列腺增生(BPH)患者和 18 例高级别前列腺上皮内瘤变(HGPIN)患者进行了回顾性研究。使用针对 MMP-2、9、11 和 13 以及基质金属蛋白酶抑制剂-3(TIMP-3)的特异性抗体对肿瘤和非肿瘤区域的组织样本进行了免疫组织化学研究,并分析了不同细胞类型的蛋白表达情况,对其应用了几种自动学习技术。与 BHP 或 HGPIN 标本相比,PCa 诊断前良性前列腺活检的上皮细胞(ECs)和成纤维细胞显示出 MMPs 和 TIMP-3 的表达明显更高。机器学习技术可以提供这些患者之间的可区分分类,准确率大于 95%,考虑到 ECs 时,准确率略低。此外,还发现同一患者的良性活检和前列腺切除术标本的配对组织发生了进化变化。因此,与良性活检的相应区域相比,来自前列腺切除术肿瘤区域的 ECs 显示出更高的 MMPs 和 TIMP-3 表达。在这些区域的成纤维细胞之间也发现了 MMP-9 和 TIMP-3 表达的相似差异。分类器确定,在 PCa 诊断前进行良性前列腺活检的患者的 ECs 中 MMPs/TIMP-3 表达较高,因此在没有未来癌症发展的区域(如未来肿瘤区域)与 BPH 或 HGPIN 患者的活检样本相比。MMP-2、9、11、13 和 TIMP-3 的表达表型定义了与未来肿瘤发展相关的 ECs。此外,结果表明,活检组织中 MMPs/TIMPs 的表达可能反映了从良性前列腺组织到 PCa 的进化变化。因此,这些发现与其他参数相结合可能有助于提高对 PCa 诊断的怀疑。