Tess M W, Dickerson G E, Nienaber J A, Ferrell C L
J Anim Sci. 1986 Apr;62(4):968-79. doi: 10.2527/jas1986.624968x.
Differences in growth, chemical body composition and visceral organ development were evaluated in three genetic stocks: Beltsville Highfat (HF) and Lowfat (LF) Duroc-Yorkshire composites and a Hampshire X Large White cross (CX). Ten sets of littermate barrows were used from each stock. One pig from each set was slaughtered at 10, 17 and 24 wk of age. After slaughter, each pig was dissected into three fractions: carcass, head and feet, viscera and blood. Backfat was measured at three locations and visceral organs were weighed separately. Each fraction was frozen, ground, sampled and analyzed in duplicate for protein, fat, water and ash. The CX pigs were heaviest at all ages and contained the most fat-free mass (FFM). The HF pigs were smallest and contained the most fat, while LF pigs tended to be intermediate. The LF pigs deposited a greater proportion of weight in head and feet and a greater proportion of total FFM in the carcass than HF and CX pigs. Estimated allometric growth coefficients for non-fat chemical components relative to empty body weight (EBWT) were lower for HF than LF and CX, which were similar. Coefficients for fat were similar among stocks yet intercepts differed widely. Relative to total FFM, water increased at a faster rate and ash a slower rate in CX pigs compared to HF and LF. Growth coefficients were calculated for internal organs relative to EBWT. Coefficients for organs of the digestive tract were not different among stocks. However, significant differences among stocks were found for heart, lung, spleen and liver that were not explained by differences in body composition.