Biochemistry Department and Centre for Environmental Policy, Imperial College London, London SW7 2AZ, UK.
Analytical Development, GlaxoSmithKline, Stevenage SG1 2NY, UK.
Molecules. 2023 Apr 17;28(8):3518. doi: 10.3390/molecules28083518.
Ochratoxin A is historically the most notable secondary metabolite of on account of its toxicity to animals and fish. Currently, over 150 compounds of diverse structure and biosynthesis is a challenge to predict the array for any particular isolate. A brief focus 30 years ago on the failure to produce ochratoxins in foods in Europe and the USA revealed consistent failures to produce ochratoxin A by isolates from some USA beans. Analysis for familiar or novel metabolites particularly focused on a compound for which mass and NMR analyses were inconclusive. Resort to C-labelled biosynthetic precursors, particularly phenylalanine, to search for any close alternative to ochratoxins, was combined with conventional shredded-wheat/shaken-flask fermentation. This yielded, for an extract, an autoradiograph of a preparative silica gel chromatogram, which was subsequently analysed for an excised fraction using spectroscopic methodologies. Circumstances then delayed progress for many years until the present collaboration revealed notoamide R. Meanwhile, pharmaceutical discovery around the turn of the millennium revealed stephacidins and notoamides, biosynthetically combining indole, isoprenyl and diketopiperazine components. Later, in Japan, notoamide R was added as a metabolite of an sp. isolated from a marine mussel, and the compound was recovered from 1800 Petri dish fermentations. Renewed attention to our former studies in England has since shown for the first time that notoamide R can be a prominent metabolite of , sourced from a single shredded wheat flask culture with its structure confirmed by spectroscopic data, and in the absence of ochratoxins. Renewed attention to the archived autoradiographed chromatogram allowed further exploration, but in particular has stimulated a fundamental biosynthetic approach to considering influences redirecting intermediary metabolism to secondary metabolite accumulation.
赭曲霉毒素 A 是历史上最著名的次级代谢产物之一,因为它对动物和鱼类具有毒性。目前,已经发现了 150 多种结构和生物合成多样化的化合物,这使得预测任何特定分离株的化合物种类都具有挑战性。大约 30 年前,人们对欧洲和美国食品中未能产生赭曲霉毒素的短暂关注,揭示了一些来自美国豆类的分离株始终无法产生赭曲霉毒素 A 的事实。对熟悉或新型代谢物的分析,特别是对质谱和核磁共振分析结果不确定的化合物的分析。利用 C 标记的生物合成前体,特别是苯丙氨酸,来寻找与赭曲霉毒素密切相关的替代物,与常规的碎麦/摇瓶发酵相结合。这为提取物生成了一个制备硅胶色谱图的放射自显影图,随后使用光谱方法对切除的部分进行了分析。当时的情况使研究进展停滞了多年,直到目前的合作揭示了 notoamide R。与此同时,千禧年之交的药物发现揭示了 staphaidins 和 notoamides,它们在生物合成上结合了吲哚、异戊烯基和二酮哌嗪成分。后来,在日本,notoamide R 被添加为一种从海洋贻贝中分离的 菌的代谢物,该化合物从 1800 个培养皿发酵中回收。随后,人们重新关注了我们之前在英国的研究,首次表明 notoamide R 可以成为 的一种重要代谢物,该化合物来源于单一的碎麦摇瓶培养物,其结构通过光谱数据得到确认,且不存在赭曲霉毒素。对存档的放射自显影色谱图的重新关注使得进一步的探索成为可能,但特别刺激了一种基本的生物合成方法,以考虑影响中间代谢物向次级代谢物积累的因素。