Suppr超能文献

用接枝有普朗尼克P85的单壁碳纳米管进行种子引发可保持豌豆植株的功能和结构特征。

Seed Priming with Single-Walled Carbon Nanotubes Grafted with Pluronic P85 Preserves the Functional and Structural Characteristics of Pea Plants.

作者信息

Krumova Sashka, Petrova Asya, Petrova Nia, Stoichev Svetozar, Ilkov Daniel, Tsonev Tsonko, Petrov Petar, Koleva Dimitrina, Velikova Violeta

机构信息

Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, "Acad. G. Bonchev" Str., Bl. 21, 1113 Sofia, Bulgaria.

Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, "Acad. G. Bonchev" Str., Bl. 21, 1113 Sofia, Bulgaria.

出版信息

Nanomaterials (Basel). 2023 Apr 11;13(8):1332. doi: 10.3390/nano13081332.

Abstract

The engineering of carbon nanotubes in the last decades resulted in a variety of applications in electronics, electrochemistry, and biomedicine. A number of reports also evidenced their valuable application in agriculture as plant growth regulators and nanocarriers. In this work, we explored the effect of seed priming with single-walled carbon nanotubes grafted with Pluronic P85 polymer (denoted P85-SWCNT) on (var. RAN-1) seed germination, early stages of plant development, leaf anatomy, and photosynthetic efficiency. We evaluated the observed effects in relation to hydro- (control) and P85-primed seeds. Our data clearly revealed that seed priming with P85-SWCNT is safe for the plant since it does not impair the seed germination, plant development, leaf anatomy, biomass, and photosynthetic activity, and even increases the amount of photochemically active photosystem II centers in a concentration-dependent manner. Only 300 mg/L concentration exerts an adverse effect on those parameters. The P85 polymer, however, was found to exhibit a number of negative effects on plant growth (i.e., root length, leaf anatomy, biomass accumulation and photoprotection capability), most probably related to the unfavorable interaction of P85 unimers with plant membranes. Our findings substantiate the future exploration and exploitation of P85-SWCNT as nanocarriers of specific substances promoting not only plant growth at optimal conditions but also better plant performance under a variety of environmental stresses.

摘要

在过去几十年中,碳纳米管的工程化已在电子学、电化学和生物医学等领域得到了广泛应用。许多报告也证明了它们作为植物生长调节剂和纳米载体在农业中的重要应用价值。在本研究中,我们探究了用接枝了普朗尼克P85聚合物的单壁碳纳米管(记为P85-SWCNT)对RAN-1品种种子进行引发处理后,对种子萌发、植物发育早期阶段、叶片解剖结构和光合效率的影响。我们评估了所观察到的效应与水引发(对照)种子和P85引发种子的关系。我们的数据清楚地表明,用P85-SWCNT对种子进行引发处理对植物是安全的,因为它不会损害种子萌发、植物发育、叶片解剖结构、生物量和光合活性,甚至还能以浓度依赖的方式增加光化学活性光合系统II中心的数量。只有300毫克/升的浓度对这些参数产生不利影响。然而,发现P85聚合物对植物生长表现出许多负面影响(即根长、叶片解剖结构、生物量积累和光保护能力),这很可能与P85单分子与植物膜的不利相互作用有关。我们的研究结果证实了未来对P85-SWCNT作为特定物质的纳米载体进行探索和开发的潜力,它不仅能在最佳条件下促进植物生长,还能在各种环境胁迫下提高植物的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1c7/10143637/76fa58c42bec/nanomaterials-13-01332-sch001.jpg

相似文献

4
Effects of plastic-derived carbon dots on germination and growth of pea (Pisum sativum) via seed nano-priming.
Chemosphere. 2023 Mar;316:137868. doi: 10.1016/j.chemosphere.2023.137868. Epub 2023 Jan 12.
5
Seed priming improves chilling tolerance in chickpea by modulating germination metabolism, trehalose accumulation and carbon assimilation.
Plant Physiol Biochem. 2017 Feb;111:274-283. doi: 10.1016/j.plaphy.2016.12.012. Epub 2016 Dec 9.
6
Seed priming with proline improved photosystem II efficiency and growth of wheat (Triticum aestivum L.).
BMC Plant Biol. 2021 Oct 30;21(1):502. doi: 10.1186/s12870-021-03273-2.
8
Molecular and physiological dissection of enhanced seed germination using short-term low-concentration salt seed priming in tomato.
Plant Physiol Biochem. 2012 Mar;52:28-37. doi: 10.1016/j.plaphy.2011.11.005. Epub 2011 Nov 12.
9
Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat.
Plant Physiol Biochem. 2021 Mar;160:341-351. doi: 10.1016/j.plaphy.2021.01.032. Epub 2021 Jan 27.
10
Fullerol improves seed germination, biomass accumulation, photosynthesis and antioxidant system in Brassica napus L. under water stress.
Plant Physiol Biochem. 2018 Aug;129:130-140. doi: 10.1016/j.plaphy.2018.05.026. Epub 2018 May 26.

引用本文的文献

1
Priming of seeds with stabilized nanomicelles: effects on seedling development and photosynthetic function.
Photosynthetica. 2023 Sep 25;61(4):432-440. doi: 10.32615/ps.2023.033. eCollection 2023.
2
Carbon Nanomaterials in Seed Priming: Current Possibilities.
ACS Omega. 2024 Oct 29;9(45):44891-44906. doi: 10.1021/acsomega.4c07230. eCollection 2024 Nov 12.
4
Extracellular synthesis of silver nanoparticle using yeast extracts: antibacterial and seed priming applicationss.
Appl Microbiol Biotechnol. 2024 Jan 19;108(1):150. doi: 10.1007/s00253-023-12920-7.

本文引用的文献

1
Fluorescence quenching in thylakoid membranes induced by single-walled carbon nanotubes.
Photochem Photobiol Sci. 2023 Jul;22(7):1625-1635. doi: 10.1007/s43630-023-00403-7. Epub 2023 Mar 19.
3
Improving photosynthetic efficiency by modulating non-photochemical quenching.
Trends Plant Sci. 2023 Mar;28(3):264-266. doi: 10.1016/j.tplants.2022.12.016. Epub 2022 Dec 28.
4
Single-walled carbon nanotubes protect photosynthetic reactions in Chlamydomonas reinhardtii against photoinhibition.
Plant Physiol Biochem. 2022 Dec 1;192:298-307. doi: 10.1016/j.plaphy.2022.10.009. Epub 2022 Oct 12.
5
Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection.
Science. 2022 Aug 19;377(6608):851-854. doi: 10.1126/science.adc9831. Epub 2022 Aug 18.
6
toxicity of carbon nanotubes: a systematic review.
RSC Adv. 2022 May 31;12(25):16235-16256. doi: 10.1039/d2ra02519a. eCollection 2022 May 23.
7
Engineering plants with carbon nanotubes: a sustainable agriculture approach.
J Nanobiotechnology. 2022 Jun 14;20(1):275. doi: 10.1186/s12951-022-01483-w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验