Suppr超能文献

药理学、非药理学政策与突变:一种基于人工智能的多维政策制定算法,用于控制大流行病的伤亡。

Pharmacological, Non-Pharmacological Policies and Mutation: An Artificial Intelligence Based Multi-Dimensional Policy Making Algorithm for Controlling the Casualties of the Pandemic Diseases.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):9477-9488. doi: 10.1109/TPAMI.2021.3127674. Epub 2022 Nov 7.

Abstract

Fighting against the pandemic diseases with unique characters requires new sophisticated approaches like the artificial intelligence. This paper develops an artificial intelligence algorithm to produce multi-dimensional policies for controlling and minimizing the pandemic casualties under the limited pharmacological resources. In this respect, a comprehensive parametric model with a priority and age-specific vaccination policy and a variety of non-pharmacological policies are introduced. This parametric model is utilized for constructing an artificial intelligence algorithm by following the exact analogy of the model-based solution. Also, this parametric model is manipulated by the artificial intelligence algorithm to seek for the best multi-dimensional non-pharmacological policies that minimize the future pandemic casualties as desired. The role of the pharmacological and non-pharmacological policies on the uncertain future casualties are extensively addressed on the real data. It is shown that the developed artificial intelligence algorithm is able to produce efficient policies which satisfy the particular optimization targets such as focusing on minimization of the death casualties more than the infected casualties or considering the curfews on the people age over 65 rather than the other non-pharmacological policies. The paper finally analyses a variety of the mutant virus cases and the corresponding non-pharmacological policies aiming to reduce the morbidity and mortality rates.

摘要

用独特的特征对抗流行疾病需要新的复杂方法,例如人工智能。本文开发了一种人工智能算法,以在有限的药理学资源下为控制和最小化大流行伤亡人数制定多维政策。在这方面,引入了一个综合的参数模型,该模型具有优先级和年龄特异性疫苗接种政策以及多种非药理学政策。该参数模型通过遵循基于模型的解决方案的精确类比来用于构建人工智能算法。此外,通过人工智能算法对该参数模型进行操作,以寻求最佳的多维非药理学政策,以期望最小化未来的大流行伤亡人数。对实际数据上的药理学和非药理学政策对不确定的未来伤亡人数的作用进行了广泛的研究。结果表明,所开发的人工智能算法能够产生有效的政策,这些政策满足特定的优化目标,例如更关注死亡人数而不是感染人数的最小化,或者考虑对 65 岁以上人群的宵禁而不是其他非药理学政策。本文最后分析了各种突变病毒病例和相应的非药理学政策,旨在降低发病率和死亡率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验