Department of Civil Engineering, Inha University, Incheon 22212, Republic of Korea.
Center for Smart Construction Technology, Korea Expressway Corporation, Hwaseong 18489, Republic of Korea.
Sensors (Basel). 2023 Apr 10;23(8):3870. doi: 10.3390/s23083870.
Object localization is a sub-field of computer vision-based object recognition technology that identifies object classes and locations. Studies on safety management are still in their infancy, particularly those aimed at lowering occupational fatalities and accidents at indoor construction sites. In comparison to manual procedures, this study suggests an improved discriminative object localization (IDOL) algorithm to aid safety managers with visualization to improve indoor construction site safety management. The IDOL algorithm employs Grad-CAM visualization images from the EfficientNet-B7 classification network to automatically identify internal characteristics pertinent to the set of classes evaluated by the network model without the need for further annotation. To evaluate the performance of the presented algorithm in the study, localization accuracy in 2D coordinates and localization error in 3D coordinates of the IDOL algorithm and YOLOv5 object detection model, a leading object detection method in the current research area, are compared. The comparison findings demonstrate that the IDOL algorithm provides a higher localization accuracy with more precise coordinates than the YOLOv5 model over both 2D images and 3D point cloud coordinates. The results of the study indicate that the IDOL algorithm achieved improved localization performance over the existing YOLOv5 object detection model and, thus, is able to assist with visualization of indoor construction sites in order to enhance safety management.
目标定位是基于计算机视觉的目标识别技术的一个子领域,用于识别目标类别和位置。安全管理方面的研究仍处于起步阶段,特别是那些旨在降低室内建筑工地职业伤亡和事故的研究。与手动程序相比,本研究提出了一种改进的判别目标定位(IDOL)算法,以帮助安全经理进行可视化,从而改善室内建筑工地的安全管理。IDOL 算法使用 EfficientNet-B7 分类网络的 Grad-CAM 可视化图像,自动识别与网络模型评估的类别集相关的内部特征,而无需进一步注释。为了评估所提出的算法在研究中的性能,比较了 IDOL 算法和 YOLOv5 目标检测模型(当前研究领域中的领先目标检测方法)在 2D 坐标中的定位精度和在 3D 坐标中的定位误差。比较结果表明,IDOL 算法在 2D 图像和 3D 点云坐标上均比 YOLOv5 模型提供了更高的定位精度和更精确的坐标。研究结果表明,IDOL 算法在现有的 YOLOv5 目标检测模型的基础上实现了改进的定位性能,因此能够协助室内建筑工地的可视化,从而加强安全管理。
Sensors (Basel). 2023-4-10
Sensors (Basel). 2024-6-26
Sensors (Basel). 2022-8-4
Micromachines (Basel). 2021-10-20
Sensors (Basel). 2023-11-10
Sensors (Basel). 2024-4-28
Sensors (Basel). 2023-3-31
Front Neurorobot. 2022-5-19
Sensors (Basel). 2023-2-3
Sensors (Basel). 2023-1-13