文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

施工现场安全管理:计算机视觉与深度学习方法。

Construction Site Safety Management: A Computer Vision and Deep Learning Approach.

机构信息

Energy IT Convergence Research Center, Korea Electronics Technology Institute, Seongnam-si 13509, Republic of Korea.

出版信息

Sensors (Basel). 2023 Jan 13;23(2):944. doi: 10.3390/s23020944.


DOI:10.3390/s23020944
PMID:36679738
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9863726/
Abstract

In this study, we used image recognition technology to explore different ways to improve the safety of construction workers. Three object recognition scenarios were designed for safety at a construction site, and a corresponding object recognition model was developed for each scenario. The first object recognition model checks whether there are construction workers at the site. The second object recognition model assesses the risk of falling (falling off a structure or falling down) when working at an elevated position. The third object recognition model determines whether the workers are appropriately wearing safety helmets and vests. These three models were newly created using the image data collected from the construction sites and synthetic image data collected from the virtual environment based on transfer learning. In particular, we verified an artificial intelligence model based on a virtual environment in this study. Thus, simulating and performing tests on worker falls and fall injuries, which are difficult to re-enact by humans, are efficient algorithm verification methods. The verification and synthesis data acquisition method based on a virtual environment is one of the main contributions of this study. This paper describes the overall application development approach, including the structure and method used to collect the construction site image data, structure of the training image dataset, image dataset augmentation method, and the artificial intelligence backbone model applied for transfer learning.

摘要

在这项研究中,我们使用图像识别技术来探索提高建筑工人安全的不同方法。设计了三个建筑工地安全的目标识别场景,并为每个场景开发了相应的目标识别模型。第一个目标识别模型检查现场是否有建筑工人。第二个目标识别模型评估在高处工作时坠落(从结构上坠落或坠落)的风险。第三个目标识别模型确定工人是否正确佩戴安全头盔和背心。这三个模型是使用从建筑工地收集的图像数据和基于迁移学习从虚拟环境中收集的合成图像数据新创建的。特别是,本研究验证了基于虚拟环境的人工智能模型。因此,模拟和执行工人坠落和坠落伤害的测试,这些测试对于人类来说很难重现,是有效的算法验证方法。基于虚拟环境的验证和综合数据采集方法是本研究的主要贡献之一。本文描述了整体应用开发方法,包括用于收集建筑工地图像数据的结构和方法、训练图像数据集的结构、图像数据集增强方法以及应用于迁移学习的人工智能骨干模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/fa2d835f71dc/sensors-23-00944-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/bc4e93f4a210/sensors-23-00944-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/c14beacb316d/sensors-23-00944-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/53d5aadd8e35/sensors-23-00944-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/b6f53ad6de63/sensors-23-00944-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/9a8b35d85d87/sensors-23-00944-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/0804e3958bfb/sensors-23-00944-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/358432c26d22/sensors-23-00944-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/dfd887614520/sensors-23-00944-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/6b1da60b6bba/sensors-23-00944-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/cb396b2245d4/sensors-23-00944-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/a1925384f3ce/sensors-23-00944-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/7a6e888d0c00/sensors-23-00944-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/0683921e9410/sensors-23-00944-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/d44975b1160a/sensors-23-00944-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/b0cc2d6e5adc/sensors-23-00944-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/fa2d835f71dc/sensors-23-00944-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/bc4e93f4a210/sensors-23-00944-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/c14beacb316d/sensors-23-00944-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/53d5aadd8e35/sensors-23-00944-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/b6f53ad6de63/sensors-23-00944-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/9a8b35d85d87/sensors-23-00944-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/0804e3958bfb/sensors-23-00944-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/358432c26d22/sensors-23-00944-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/dfd887614520/sensors-23-00944-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/6b1da60b6bba/sensors-23-00944-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/cb396b2245d4/sensors-23-00944-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/a1925384f3ce/sensors-23-00944-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/7a6e888d0c00/sensors-23-00944-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/0683921e9410/sensors-23-00944-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/d44975b1160a/sensors-23-00944-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/b0cc2d6e5adc/sensors-23-00944-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ea/9863726/fa2d835f71dc/sensors-23-00944-g016.jpg

相似文献

[1]
Construction Site Safety Management: A Computer Vision and Deep Learning Approach.

Sensors (Basel). 2023-1-13

[2]
Unmanned Aerial Systems and Deep Learning for Safety and Health Activity Monitoring on Construction Sites.

Sensors (Basel). 2023-7-26

[3]
Object recognition in medical images via anatomy-guided deep learning.

Med Image Anal. 2022-10

[4]
YOLOv5s-gConv: detecting personal protective equipment for workers at height.

Front Public Health. 2023

[5]
Human-computer interaction based health diagnostics using ResNet34 for tongue image classification.

Comput Methods Programs Biomed. 2022-11

[6]
Developing and Evaluating Deep Learning Algorithms for Object Detection: Key Points for Achieving Superior Model Performance.

Korean J Radiol. 2023-7

[7]
Evaluating the Work Productivity of Assembling Reinforcement through the Objects Detected by Deep Learning.

Sensors (Basel). 2021-8-19

[8]
Creating objects and object categories for studying perception and perceptual learning.

J Vis Exp. 2012-11-2

[9]
Real-time monitoring unsafe behaviors of portable multi-position ladder worker using deep learning based on vision data.

J Safety Res. 2023-12

[10]
The Impact of Data Augmentations on Deep Learning-Based Marine Object Classification in Benthic Image Transects.

Sensors (Basel). 2022-7-19

引用本文的文献

[1]
Developing Computer Vision Models for Classifying Grain Shapes of Crushed Stone.

Sensors (Basel). 2025-3-19

[2]
Deep learning-based system for prediction of work at height in construction site.

Heliyon. 2025-1-17

[3]
Investigation of Unsafe Construction Site Conditions Using Deep Learning Algorithms Using Unmanned Aerial Vehicles.

Sensors (Basel). 2024-10-20

[4]
Improved Discriminative Object Localization Algorithm for Safety Management of Indoor Construction.

Sensors (Basel). 2023-4-10

本文引用的文献

[1]
A Big-Data-based platform of workers' behavior: Observations from the field.

Accid Anal Prev. 2015-11-21

[2]
Morphological grayscale reconstruction in image analysis: applications and efficient algorithms.

IEEE Trans Image Process. 1993

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索