文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 StrongSORT 的戴盔检测。

Helmet-Wearing Tracking Detection Based on StrongSORT.

机构信息

School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China.

出版信息

Sensors (Basel). 2023 Feb 3;23(3):1682. doi: 10.3390/s23031682.


DOI:10.3390/s23031682
PMID:36772722
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9919190/
Abstract

Object detection based on deep learning is one of the most important and fundamental tasks of computer vision. High-performance detection algorithms have been widely used in many practical fields. For the management of workers wearing helmets in construction scenarios, this paper proposes a framework model based on the YOLOv5 detection algorithm, combined with multi-object tracking algorithms, to monitor and track whether workers wear safety helmets in real-time video. The improved StrongSORT tracking algorithm of DeepSORT is selected to reduce the loss of the tracked object caused by the occlusion, trajectory blur, and motion scale of the object. The safety helmet dataset is trained with YOLOv5s, and the best result of training is used as the weight model in the StrongSORT tracking algorithm. The experimental results show that the mAP@0.5 of all classes in the YOLOv5s model can reach 95.1% in the validation dataset, mAP@0.5:0.95 is 62.1%, and the precision of wearing helmet is 95.7%. After the box regression loss function was changed from CIOU to Focal-EIOU, the mAP@0.5 increased to 95.4%, mAP@0.5:0.95 increased to 62.9%, and the precision of wearing helmet increased to 96.5%, which were increased by 0.3%, 0.8% and 0.8%, respectively. StrongSORT can update object trajectories in video frames at a speed of 0.05 s per frame. Based on the improved YOLOv5s combined with the StrongSORT tracking algorithm, the helmet-wearing tracking detection can achieve better performance.

摘要

基于深度学习的目标检测是计算机视觉中最重要和最基本的任务之一。高性能的检测算法已广泛应用于许多实际领域。针对建筑工地工人佩戴安全帽的管理问题,本文提出了一种基于 YOLOv5 检测算法的框架模型,结合多目标跟踪算法,实时视频中监控和跟踪工人是否佩戴安全帽。选择 DeepSORT 的改进型 StrongSORT 跟踪算法来减少由于物体遮挡、轨迹模糊和运动尺度导致的跟踪物体的丢失。使用 YOLOv5s 对安全头盔数据集进行训练,并将训练的最佳结果用作 StrongSORT 跟踪算法中的权重模型。实验结果表明,YOLOv5s 模型在验证数据集中所有类别的 mAP@0.5 可以达到 95.1%,mAP@0.5:0.95 为 62.1%,戴安全帽的准确率为 95.7%。在将框回归损失函数从 CIOU 更改为 Focal-EIOU 后,mAP@0.5 增加到 95.4%,mAP@0.5:0.95 增加到 62.9%,戴安全帽的准确率增加到 96.5%,分别提高了 0.3%、0.8%和 0.8%。StrongSORT 可以在视频帧中以每帧 0.05 秒的速度更新物体轨迹。基于改进的 YOLOv5s 结合 StrongSORT 跟踪算法,安全帽佩戴跟踪检测可以获得更好的性能。

相似文献

[1]
Helmet-Wearing Tracking Detection Based on StrongSORT.

Sensors (Basel). 2023-2-3

[2]
Helmet Wearing State Detection Based on Improved Yolov5s.

Sensors (Basel). 2022-12-14

[3]
Research on helmet wearing detection method based on deep learning.

Sci Rep. 2024-3-25

[4]
Research on Safety Helmet Detection Algorithm Based on Improved YOLOv5s.

Sensors (Basel). 2023-6-22

[5]
SHEL5K: An Extended Dataset and Benchmarking for Safety Helmet Detection.

Sensors (Basel). 2022-3-17

[6]
Improved UAV-to-Ground Multi-Target Tracking Algorithm Based on StrongSORT.

Sensors (Basel). 2023-11-17

[7]
A Long-Term Video Tracking Method for Group-Housed Pigs.

Animals (Basel). 2024-5-19

[8]
Green pepper fruits counting based on improved DeepSort and optimized Yolov5s.

Front Plant Sci. 2024-7-16

[9]
Detection of safety helmet and mask wearing using improved YOLOv5s.

Sci Rep. 2023-12-5

[10]
Estimating helmet wearing rates via a scalable, low-cost algorithm: a novel integration of deep learning and google street view.

BMC Public Health. 2024-6-20

引用本文的文献

[1]
ESE-YOLOv8: A Novel Object Detection Algorithm for Safety Belt Detection during Working at Heights.

Entropy (Basel). 2024-7-11

[2]
Improved Discriminative Object Localization Algorithm for Safety Management of Indoor Construction.

Sensors (Basel). 2023-4-10

本文引用的文献

[1]
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

IEEE Trans Pattern Anal Mach Intell. 2016-6-6

[2]
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

IEEE Trans Pattern Anal Mach Intell. 2015-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索