School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu 610059, China.
College of Computer Science and Cyber Security (Oxford Brookes College), Chengdu University of Technology, Chengdu 610059, China.
Sensors (Basel). 2023 Apr 12;23(8):3918. doi: 10.3390/s23083918.
In the current chip quality detection industry, detecting missing pins in chips is a critical task, but current methods often rely on inefficient manual screening or machine vision algorithms deployed in power-hungry computers that can only identify one chip at a time. To address this issue, we propose a fast and low-power multi-object detection system based on the YOLOv4-tiny algorithm and a small-size AXU2CGB platform that utilizes a low-power FPGA for hardware acceleration. By adopting loop tiling to cache feature map blocks, designing an FPGA accelerator structure with two-layer ping-pong optimization as well as multiplex parallel convolution kernels, enhancing the dataset, and optimizing network parameters, we achieve a 0.468 s per-image detection speed, 3.52 W power consumption, 89.33% mean average precision (mAP), and 100% missing pin recognition rate regardless of the number of missing pins. Our system reduces detection time by 73.27% and power consumption by 23.08% compared to a CPU, while delivering a more balanced boost in performance compared to other solutions.
在当前的芯片质量检测行业中,检测芯片中的缺失管脚是一项关键任务,但目前的方法往往依赖于效率低下的人工筛选或部署在耗电计算机中的机器视觉算法,这些算法一次只能识别一个芯片。为了解决这个问题,我们提出了一种基于 YOLOv4-tiny 算法和小型 AXU2CGB 平台的快速、低功耗多目标检测系统,该系统利用低功耗 FPGA 进行硬件加速。通过采用循环平铺技术来缓存特征图块,设计具有两层乒乓优化和复用并行卷积核的 FPGA 加速器结构,增强数据集以及优化网络参数,我们实现了 0.468 秒/张图像的检测速度、3.52W 的功耗、89.33%的平均精度(mAP)和 100%的缺失管脚识别率,无论缺失管脚的数量如何。与 CPU 相比,我们的系统将检测时间缩短了 73.27%,将功耗降低了 23.08%,同时在性能上实现了更均衡的提升。