Suppr超能文献

低成本电子设备,用于使用介质谐振器传感器和机器学习技术对甘油溶液进行自动分类和介电常数估计。

Low-Cost Electronics for Automatic Classification and Permittivity Estimation of Glycerin Solutions Using a Dielectric Resonator Sensor and Machine Learning Techniques.

机构信息

Institute for Research in Technology, ICAI School of Engineering, Comillas Pontifical University, 28049 Madrid, Spain.

出版信息

Sensors (Basel). 2023 Apr 12;23(8):3940. doi: 10.3390/s23083940.

Abstract

Glycerin is a versatile organic molecule widely used in the pharmaceutical, food, and cosmetic industries, but it also has a central role in biodiesel refining. This research proposes a dielectric resonator (DR) sensor with a small cavity to classify glycerin solutions. A commercial VNA and a novel low-cost portable electronic reader were tested and compared to evaluate the sensor performance. Within a relative permittivity range of 1 to 78.3, measurements of air and nine distinct glycerin concentrations were taken. Both devices achieved excellent accuracy (98-100%) using Principal Component Analysis (PCA) and Support Vector Machine (SVM). In addition, permittivity estimation using Support Vector Regressor (SVR) achieved low RMSE values, around 0.6 for the VNA dataset and between 1.2 for the electronic reader. These findings prove that low-cost electronics can match the results of commercial instrumentation using machine learning techniques.

摘要

甘油是一种用途广泛的有机分子,广泛应用于制药、食品和化妆品行业,但它在生物柴油精炼中也起着核心作用。本研究提出了一种具有小腔体的介电谐振器(DR)传感器,用于对甘油溶液进行分类。测试并比较了商业 VNA 和新型低成本便携式电子读取器,以评估传感器性能。在相对介电常数范围为 1 至 78.3 的情况下,对空气和九种不同浓度的甘油进行了测量。两种设备都通过主成分分析(PCA)和支持向量机(SVM)实现了出色的精度(98-100%)。此外,使用支持向量回归器(SVR)进行介电常数估计可实现低 RMSE 值,VNA 数据集约为 0.6,电子读取器约为 1.2。这些发现证明,使用机器学习技术,低成本电子设备可以与商业仪器的结果相匹配。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验