Faculty of Computer and Information Science, University of Ljubljana, 1000 Ljubljana, Slovenia.
Joint Research Centre, European Commission, 21027 Ispra, Italy.
Sensors (Basel). 2023 Apr 15;23(8):4006. doi: 10.3390/s23084006.
The assessment of fingermark (latent fingerprint) quality is an intrinsic part of a forensic investigation. The fingermark quality indicates the value and utility of the trace evidence recovered from the crime scene in the course of a forensic investigation; it determines how the evidence will be processed, and it correlates with the probability of finding a corresponding fingerprint in the reference dataset. The deposition of fingermarks on random surfaces occurs spontaneously in an uncontrolled fashion, which introduces imperfections to the resulting impression of the friction ridge pattern. In this work, we propose a new probabilistic framework for Automated Fingermark Quality Assessment (AFQA). We used modern deep learning techniques, which have the ability to extract patterns even from noisy data, and combined them with a methodology from the field of eXplainable AI (XAI) to make our models more transparent. Our solution first predicts a quality probability distribution, from which we then calculate the final quality value and, if needed, the uncertainty of the model. Additionally, we complemented the predicted quality value with a corresponding quality map. We used GradCAM to determine which regions of the fingermark had the largest effect on the overall quality prediction. We show that the resulting quality maps are highly correlated with the density of minutiae points in the input image. Our deep learning approach achieved high regression performance, while significantly improving the interpretability and transparency of the predictions.
指纹(潜在指纹)质量评估是法医调查的固有组成部分。指纹质量表明从犯罪现场回收的痕迹证据在法医调查过程中的价值和效用;它决定了证据将如何处理,并与在参考数据集找到相应指纹的概率相关。指纹随机沉积在无控制的情况下自发发生,这会给摩擦脊图案的结果印痕带来不完美。在这项工作中,我们提出了一种新的用于自动指纹质量评估(AFQA)的概率框架。我们使用了现代深度学习技术,这些技术有能力从嘈杂的数据中提取模式,并将它们与可解释人工智能(XAI)领域的方法结合起来,使我们的模型更加透明。我们的解决方案首先预测质量概率分布,然后从该分布中计算最终质量值,如果需要,还计算模型的不确定性。此外,我们还为预测的质量值补充了相应的质量图。我们使用 GradCAM 来确定指纹的哪些区域对整体质量预测有最大影响。我们表明,生成的质量图与输入图像中 minutiae 点的密度高度相关。我们的深度学习方法实现了高回归性能,同时显著提高了预测的可解释性和透明度。