Suppr超能文献

基于人工智能的框架在分析母乳中持久性有机污染物(POPs)动态变化方面的应用。

Application of the AI-Based Framework for Analyzing the Dynamics of Persistent Organic Pollutants (POPs) in Human Breast Milk.

作者信息

Jovanović Gordana, Bezdan Timea, Romanić Snježana Herceg, Matek Sarić Marijana, Biošić Martina, Mendaš Gordana, Stojić Andreja, Perišić Mirjana

机构信息

Institute of Physics Belgrade, a National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia.

Faculty of Informatics and Computing, Singidunum University, Danijelova 32, 11000 Belgrade, Serbia.

出版信息

Toxics. 2025 Jul 27;13(8):631. doi: 10.3390/toxics13080631.

Abstract

Human milk has been used for over 70 years to monitor pollutants such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). Despite the growing body of data, our understanding of the pollutant exposome, particularly co-exposure patterns and their interactions, remains limited. Artificial intelligence (AI) offers considerable potential to enhance biomonitoring efforts through advanced data modelling, yet its application to pollutant dynamics in complex biological matrices such as human milk remains underutilized. This study applied an AI-based framework, integrating machine learning, metaheuristic hyperparameter optimization, explainable AI, and postprocessing, to analyze PCB-170 levels in breast milk samples from 186 mothers in Zadar, Croatia. Among 24 analyzed POPs, the most influential predictors of PCB-170 concentrations were hexa- and hepta-chlorinated PCBs (PCB-180, -153, and -138), alongside ,-DDE. Maternal age and other POPs exhibited negligible global influence. SHAP-based interaction analysis revealed pronounced co-behavior among highly chlorinated congeners, especially PCB-138-PCB-153, PCB-138-PCB-180, and PCB-180-PCB-153. These findings highlight the importance of examining pollutant interactions rather than individual contributions alone. They also advocate for the revision of current monitoring strategies to prioritize multi-pollutant assessment and focus on toxicologically relevant PCB groups, improving risk evaluation in real-world exposure scenarios.

摘要

七十多年来,母乳一直被用于监测多氯联苯(PCBs)和有机氯农药(OCPs)等污染物。尽管数据不断增加,但我们对污染物暴露组的理解,尤其是共同暴露模式及其相互作用,仍然有限。人工智能(AI)通过先进的数据建模为加强生物监测工作提供了巨大潜力,然而其在母乳等复杂生物基质中污染物动态方面的应用仍未得到充分利用。本研究应用了一个基于人工智能的框架,整合机器学习、元启发式超参数优化、可解释人工智能和后处理,来分析克罗地亚扎达尔186名母亲母乳样本中的PCB-170水平。在分析的24种持久性有机污染物中,PCB-170浓度最具影响力的预测因子是六氯和七氯多氯联苯(PCB-180、-153和-138),以及β-二氯二苯乙烯。母亲年龄和其他持久性有机污染物的全球影响可忽略不计。基于SHAP的相互作用分析显示,高氯同系物之间存在明显的共同行为,尤其是PCB-138-PCB-153、PCB-138-PCB-180和PCB-180-PCB-153。这些发现凸显了考察污染物相互作用而非单独的个体贡献的重要性。它们还主张修订当前的监测策略,以优先进行多污染物评估,并关注毒理学相关的多氯联苯组,从而改善实际暴露场景中的风险评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9862/12390066/c7511e45139b/toxics-13-00631-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验