Kang Kyounglim, Peña Jasquelin
Department of Civil and Environmental Engineering, University of California, Davis, California 95616, United States.
Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
ACS Earth Space Chem. 2023 Mar 9;7(4):662-675. doi: 10.1021/acsearthspacechem.2c00271. eCollection 2023 Apr 20.
Recent laboratory and field studies show the need to consider the formation of aqueous Mn(III)-siderophore complexes in manganese (Mn) and iron (Fe) geochemical cycling, a shift from the historical view that aqueous Mn(III) species are unstable and thus unimportant. In this study, we quantified Mn and Fe mobilization by desferrioxamine B (DFOB), a terrestrial bacterial siderophore, in single (Mn or Fe) and mixed (Mn and Fe) mineral systems. We selected manganite (γ-MnOOH), δ-MnO, lepidocrocite (γ-FeOOH), and 2-line ferrihydrite (FeO·0.5HO) as relevant mineral phases. We found that DFOB mobilized Mn(III) as Mn(III)-DFOB complexes to varying extents from both Mn(III,IV) oxyhydroxides but reduction of Mn(IV) to Mn(III) was required for the mobilization of Mn(III) from δ-MnO. The initial rates of Mn(III)-DFOB mobilization from manganite and δ-MnO were not affected by the presence of lepidocrocite but decreased by a factor of 5 and 10 for manganite and δ-MnO, respectively, in the presence of 2-line ferrihydrite. Additionally, the decomposition of Mn(III)-DFOB complexes through Mn-for-Fe ligand exchange and/or ligand oxidation led to Mn(II) mobilization and Mn(III) precipitation in the mixed-mineral systems (∼10% (mol Mn/mol Fe)). As a result, the concentration of Fe(III) mobilized as Fe(III)-DFOB decreased by up to 50% and 80% in the presence of manganite and δ-MnO, respectively, compared to the single mineral systems. Our results demonstrate that siderophores, through their complexation of Mn(III), reduction of Mn(III,IV), and mobilization of Mn(II), can redistribute Mn to other soil minerals and limit the bioavailability of Fe in natural systems.
最近的实验室和野外研究表明,在锰(Mn)和铁(Fe)地球化学循环中需要考虑水相Mn(III)-铁载体配合物的形成,这与历史观点有所不同,历史观点认为水相Mn(III)物种不稳定,因此不重要。在本研究中,我们量化了陆地细菌铁载体去铁胺B(DFOB)在单一(Mn或Fe)和混合(Mn和Fe)矿物体系中对Mn和Fe的活化作用。我们选择了锰矿(γ-MnOOH)、δ-MnO、纤铁矿(γ-FeOOH)和二线水铁矿(FeO·0.5H₂O)作为相关矿物相。我们发现,DFOB能将Mn(III)以Mn(III)-DFOB配合物的形式从两种Mn(III,IV)羟基氧化物中不同程度地活化出来,但从δ-MnO中活化Mn(III)需要将Mn(IV)还原为Mn(III)。从锰矿和δ-MnO中活化Mn(III)-DFOB的初始速率不受纤铁矿存在的影响,但在二线水铁矿存在时,锰矿和δ-MnO的初始速率分别降低了5倍和10倍。此外,在混合矿物体系中,Mn(III)-DFOB配合物通过Mn-Fe配体交换和/或配体氧化分解,导致Mn(II)活化和Mn(III)沉淀(约10%(摩尔Mn/摩尔Fe))。结果,与单一矿物体系相比,在存在锰矿和δ-MnO的情况下,以Fe(III)-DFOB形式活化的Fe(III)浓度分别降低了50%和80%。我们的结果表明,铁载体通过与Mn(III)络合、还原Mn(III,IV)以及活化Mn(II),可以将Mn重新分配到其他土壤矿物中,并限制自然系统中Fe的生物有效性。