Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Department of Earth and Planetary Sciences, College of Arts & Sciences, University of Tennessee, Knoxville, Tennessee 37996, United States.
Environ Sci Technol. 2021 Sep 21;55(18):12136-12152. doi: 10.1021/acs.est.1c00299. Epub 2021 Sep 1.
Manganese (Mn) is a biologically important and redox-active metal that may exert a poorly recognized control on carbon (C) cycling in terrestrial ecosystems. Manganese influences ecosystem C dynamics by mediating biochemical pathways that include photosynthesis, serving as a reactive intermediate in the breakdown of organic molecules, and binding and/or oxidizing organic molecules through organo-mineral associations. However, the potential for Mn to influence ecosystem C storage remains unresolved. Although substantial research has demonstrated the ability of Fe- and Al-oxides to stabilize organic matter, there is a scarcity of similar information regarding Mn-oxides. Furthermore, Mn-mediated reactions regulate important litter decomposition pathways, but these processes are poorly constrained across diverse ecosystems. Here, we discuss the ecological roles of Mn in terrestrial environments and synthesize existing knowledge on the multiple pathways by which biogeochemical Mn and C cycling intersect. We demonstrate that Mn has a high potential to degrade organic molecules through abiotic and microbially mediated oxidation and to stabilize organic molecules, at least temporarily, through organo-mineral associations. We outline research priorities needed to advance understanding of Mn-C interactions, highlighting knowledge gaps that may address key uncertainties in soil C predictions.
锰(Mn)是一种重要的生物活性金属,它可能对陆地生态系统中的碳(C)循环起着尚未被充分认识的控制作用。锰通过调节包括光合作用在内的生化途径,作为有机分子分解过程中的反应中间体,并通过有机-矿物结合来结合和/或氧化有机分子,从而影响生态系统的 C 动态。然而,锰影响生态系统碳储存的潜力尚未得到解决。尽管大量研究表明 Fe 和 Al 氧化物能够稳定有机质,但关于 Mn 氧化物的类似信息却很少。此外,Mn 介导的反应调控着重要的凋落物分解途径,但这些过程在不同的生态系统中受到的限制较少。在这里,我们讨论了 Mn 在陆地环境中的生态作用,并综合了现有关于生物地球化学 Mn 和 C 循环相互作用的多种途径的知识。我们表明,Mn 具有通过非生物和微生物介导的氧化降解有机分子的巨大潜力,并通过有机-矿物结合至少暂时稳定有机分子。我们概述了推进 Mn-C 相互作用理解所需的研究重点,强调了可能解决土壤 C 预测中关键不确定性的知识差距。