Suppr超能文献

刺激诱导 PSI-LHCI 蛋白在单分子分辨率下的亚构象转变。

Stimuli-Induced Subconformation Transformation of the PSI-LHCI Protein at Single-Molecule Resolution.

机构信息

State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China.

Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China.

出版信息

Adv Sci (Weinh). 2023 Jul;10(19):e2205945. doi: 10.1002/advs.202205945. Epub 2023 Apr 28.

Abstract

Photosynthesis is a very important process for the current biosphere which can maintain such a subtle and stable circulatory ecosystem on earth through the transformation of energy and substance. Even though been widely studied in various aspects, the physiological activities, such as intrinsic structural vibration and self-regulation process to stress of photosynthetic proteins, are still not in-depth resolved in real-time. Herein, utilizing silicon nanowire biosensors with ultrasensitive temporal and spatial resolution, real-time responses of a single photosystem I-light harvesting complex I (PSI-LHCI) supercomplex of Pisum sativum to various conditions, including gradient variations in temperature, illumination, and electric field, are recorded. Under different temperatures, there is a bi-state switch process associated with the intrinsic thermal vibration behavior. When the variations of illumination and the bias voltage are applied, two additional shoulder states, probably derived from the self-conformational adjustment, are observed. Based on real-time monitoring of the dynamic processes of the PSI-LHCI supercomplex under various conditions, it is successively testified to promising nanotechnology for protein profiling and biological functional integration in photosynthesis studies.

摘要

光合作用是当前生物圈非常重要的过程,它通过能量和物质的转化,维持着地球上如此微妙和稳定的循环生态系统。尽管已经在各个方面得到了广泛的研究,但光合作用蛋白的内在结构振动和自我调节应激等生理活动,仍然没有在实时层面得到深入解析。在此,我们利用具有超灵敏时空分辨率的硅纳米线生物传感器,实时记录了豌豆单一个光系统 I-光捕获复合物 I(PSI-LHCI)超复合物对各种条件的反应,包括温度、光照和电场的梯度变化。在不同温度下,存在与内在热振动行为相关的双稳态开关过程。当光照和偏置电压变化时,观察到两个额外的肩状状态,可能来自于自构象调整。基于在各种条件下对 PSI-LHCI 超复合物动态过程的实时监测,该研究成功地证明了纳米技术在蛋白质分析和光合作用研究中的生物功能整合方面具有广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d6/10323662/cf0550c41e7b/ADVS-10-2205945-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验