Suppr超能文献

基于原子力显微镜的生物分子和细胞系统的力谱学与多参数成像

Atomic Force Microscopy-Based Force Spectroscopy and Multiparametric Imaging of Biomolecular and Cellular Systems.

作者信息

Müller Daniel J, Dumitru Andra C, Lo Giudice Cristina, Gaub Hermann E, Hinterdorfer Peter, Hummer Gerhard, De Yoreo James J, Dufrêne Yves F, Alsteens David

机构信息

Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 28, 4056 Basel, Switzerland.

Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium.

出版信息

Chem Rev. 2021 Oct 13;121(19):11701-11725. doi: 10.1021/acs.chemrev.0c00617. Epub 2020 Nov 9.

Abstract

During the last three decades, a series of key technological improvements turned atomic force microscopy (AFM) into a nanoscopic laboratory to directly observe and chemically characterize molecular and cell biological systems under physiological conditions. Here, we review key technological improvements that have established AFM as an analytical tool to observe and quantify native biological systems from the micro- to the nanoscale. Native biological systems include living tissues, cells, and cellular components such as single or complexed proteins, nucleic acids, lipids, or sugars. We showcase the procedures to customize nanoscopic chemical laboratories by functionalizing AFM tips and outline the advantages and limitations in applying different AFM modes to chemically image, sense, and manipulate biosystems at (sub)nanometer spatial and millisecond temporal resolution. We further discuss theoretical approaches to extract the kinetic and thermodynamic parameters of specific biomolecular interactions detected by AFM for single bonds and extend the discussion to multiple bonds. Finally, we highlight the potential of combining AFM with optical microscopy and spectroscopy to address the full complexity of biological systems and to tackle fundamental challenges in life sciences.

摘要

在过去三十年中,一系列关键技术改进使原子力显微镜(AFM)成为一个纳米实验室,能够在生理条件下直接观察分子和细胞生物学系统并对其进行化学表征。在此,我们回顾了那些使AFM成为一种分析工具的关键技术改进,该工具可用于从微观到纳米尺度观察和量化天然生物系统。天然生物系统包括活组织、细胞以及细胞成分,如单一或复合的蛋白质、核酸、脂质或糖类。我们展示了通过对AFM探针进行功能化来定制纳米化学实验室的程序,并概述了在以(亚)纳米空间分辨率和毫秒时间分辨率对生物系统进行化学成像、传感和操作时,应用不同AFM模式的优缺点。我们进一步讨论了从AFM检测到的单键特定生物分子相互作用中提取动力学和热力学参数的理论方法,并将讨论扩展到多键情况。最后,我们强调了将AFM与光学显微镜和光谱学相结合的潜力,以应对生物系统的全部复杂性,并应对生命科学中的基本挑战。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验