Suppr超能文献

水下自动驾驶“空气流体力学”。

Self-Driving Underwater "Aerofluidics".

作者信息

Yong Jiale, Peng Yubin, Wang Xiuwen, Li Jiawen, Hu Yanlei, Chu Jiaru, Wu Dong

机构信息

CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China.

出版信息

Adv Sci (Weinh). 2023 Jul;10(21):e2301175. doi: 10.1002/advs.202301175. Epub 2023 Apr 28.

Abstract

Here, the concept of "aerofluidics," in which a system uses microchannels to transport and manipulate trace gases at the microscopic scale to build a highly versatile integrated system based on gas-gas or gas-liquid microinteractions is proposed. A kind of underwater aerofluidic architecture is designed using superhydrophobic surface microgrooves written by a femtosecond laser. In the aqueous medium, a hollow microchannel is formed between the superhydrophobic microgrooves and the water environment, which allows gas to flow freely underwater for aerofluidic devices. Driven by Laplace pressure, gas can be self-transported along various complex patterned paths, curved surfaces, and even across different aerofluidic devices, with an ultralong transportation distance of more than 1 m. The width of the superhydrophobic microchannels of the designed aerofluidic devices is only ≈42.1 µm, enabling the aerofluidic system to achieve accurate gas transportation and control. With the advantages of flexible self-driving gas transportation and ultralong transportation distance, the underwater aerofluidic devices can realize a series of gas control functions, such as gas merging, gas aggregation, gas splitting, gas arrays, gas-gas microreactions, and gas-liquid microreactions. It is believed that underwater aerofluidic technology can have significant applications in gas-involved microanalysis, microdetection, biomedical engineering, sensors, and environmental protection.

摘要

在此,提出了“气液流控”的概念,即一个系统利用微通道在微观尺度上传输和操控痕量气体,以基于气-气或气-液微相互作用构建一个高度通用的集成系统。利用飞秒激光写入的超疏水表面微槽设计了一种水下气液流控结构。在水介质中,超疏水微槽与水环境之间形成一个中空微通道,这使得气体能够在水下自由流动,用于气液流控装置。在拉普拉斯压力的驱动下,气体能够沿着各种复杂的图案化路径、曲面,甚至跨越不同的气液流控装置进行自传输,传输距离超过1米,达到超长距离。所设计的气液流控装置的超疏水微通道宽度仅约为42.1微米,使气液流控系统能够实现精确的气体传输和控制。凭借灵活的自驱动气体传输和超长传输距离的优势,水下气液流控装置能够实现一系列气体控制功能,如气体合并、气体聚集、气体分裂、气体阵列、气-气微反应和气-液微反应。人们认为,水下气液流控技术在涉及气体的微分析、微检测、生物医学工程、传感器和环境保护等方面可能具有重要应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f81/10375095/45fa5f759282/ADVS-10-2301175-g007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验