Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium.
College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, Hunan, P. R. China.
Sci Adv. 2023 Apr 28;9(17):eadg6079. doi: 10.1126/sciadv.adg6079.
In the rising advent of organic Li-ion positive electrode materials with increased energy content, chemistries with high redox potential and intrinsic oxidation stability remain a challenge. Here, we report the solid-phase reversible electrochemistry of the oximate organic redox functionality. The disclosed oximate chemistries, including cyclic, acyclic, aliphatic, and tetra-functional stereotypes, uncover the complex interplay between the molecular structure and the electroactivity. Among the exotic features, the most appealing one is the reversible electrochemical polymerization accompanying the charge storage process in solid phase, through intermolecular azodioxy bond coupling. The best-performing oximate delivers a high reversible capacity of 350 mAh g at an average potential of 3.0 versus Li/Li, attaining 1 kWh kg specific energy content at the material level metric. This work ascertains a strong link between electrochemistry, organic chemistry, and battery science by emphasizing on how different phases, mechanisms, and performances can be accessed using a single chemical functionality.
在能量密度不断提高的有机锂离子正极材料的兴起中,具有高氧化还原电位和固有氧化稳定性的化学物质仍然是一个挑战。在这里,我们报告了氧肟酸盐有机氧化还原官能团的固相可逆电化学。所揭示的氧肟酸盐化学物质,包括环状、无环、脂肪族和四官能团的刻板印象,揭示了分子结构和电活性之间的复杂相互作用。在奇异的特征中,最吸引人的是可逆电化学聚合伴随着固相中电荷存储过程,通过分子间偶氮二氧基键偶联。表现最好的氧肟酸盐在 3.0 伏相对于 Li/Li 的平均电位下提供了 350 mAh g 的高可逆容量,在材料水平的度量上达到了 1 kWh kg 的比能量含量。这项工作通过强调如何使用单一化学官能团来获得不同的相、机制和性能,从而在电化学、有机化学和电池科学之间建立了牢固的联系。