Suppr超能文献

通过多相电催化从小分子前体制备 C-N 键。

Construction of C-N bonds from small-molecule precursors through heterogeneous electrocatalysis.

机构信息

Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada.

出版信息

Nat Rev Chem. 2022 May;6(5):303-319. doi: 10.1038/s41570-022-00379-5. Epub 2022 Apr 25.

Abstract

Energy-intensive thermochemical processes within chemical manufacturing are a major contributor to global CO emissions. With the increasing push for sustainability, the scientific community is striving to develop renewable energy-powered electrochemical technologies in lieu of CO-emitting fossil-fuel-driven methods. However, to fully electrify chemical manufacturing, it is imperative to expand the scope of electrosynthetic technologies, particularly through the innovation of reactions involving nitrogen-based reactants. This Review focuses on a rapidly emerging area, namely the formation of C-N bonds through heterogeneous electrocatalysis. The C-N bond motif is found in many fertilizers (such as urea) as well as commodity and fine chemicals (with functional groups such as amines and amides). The ability to generate C-N bonds from reactants such as CO, NO or N would provide sustainable alternatives to the thermochemical routes used at present. We start by examining thermochemical, enzymatic and molecular catalytic systems for C-N bond formation, identifying how concepts from these can be translated to heterogeneous electrocatalysis. Next, we discuss successful heterogeneous electrocatalytic systems and highlight promising research directions. Finally, we discuss the remaining questions and knowledge gaps and thus set the trajectory for future advances in heterogeneous electrocatalytic formation of C-N bonds.

摘要

化学制造过程中的能源密集型热化学反应是全球 CO 排放的主要贡献者。随着可持续发展的呼声日益高涨,科学界正在努力开发可再生能源驱动的电化学技术,以替代排放 CO 的化石燃料驱动方法。然而,要实现化学制造的全面电气化,就必须扩大电合成技术的范围,特别是通过创新涉及含氮反应物的反应。本综述重点介绍了一个迅速发展的领域,即通过多相电催化形成 C-N 键。C-N 键结构存在于许多肥料(如尿素)以及大宗商品和精细化学品(具有胺和酰胺等官能团)中。能够从 CO、NO 或 N 等反应物中生成 C-N 键,为目前使用的热化学途径提供了可持续的替代方案。我们首先研究了用于 C-N 键形成的热化学、酶和分子催化系统,确定了如何将这些概念转化为多相电催化。接下来,我们讨论了成功的多相电催化系统,并强调了有前途的研究方向。最后,我们讨论了剩余的问题和知识差距,从而为多相电催化形成 C-N 键的未来发展设定了轨迹。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验