Suppr超能文献

现场传感器和机器学习可实现低成本的土壤氮测定。

Point-of-use sensors and machine learning enable low-cost determination of soil nitrogen.

机构信息

Department of Bioengineering, Imperial College London, London, UK.

出版信息

Nat Food. 2021 Dec;2(12):981-989. doi: 10.1038/s43016-021-00416-4. Epub 2021 Dec 13.

Abstract

Overfertilization with nitrogen fertilizers has damaged the environment and health of soil, but standard laboratory testing of soil to determine the levels of nitrogen (mainly NH and NO) is not performed regularly. Here we demonstrate that point-of-use measurements of NH, combined with soil conductivity, pH, easily accessible weather and timing data, allow instantaneous prediction of levels of NO in soil (R = 0.70) using a machine learning model. A long short-term memory recurrent neural network model can also be used to predict levels of NH and NO up to 12 days into the future from a single measurement at day one, with [Formula: see text] and [Formula: see text], for unseen weather conditions. Our machine-learning-based approach eliminates the need for dedicated instruments to determine the levels of NO in soil. Nitrogenous soil nutrients can be determined and predicted with enough accuracy to forecast the impact of climate on fertilization planning and to tune timing for crop requirements, reducing overfertilization while improving crop yields.

摘要

过度使用氮肥会破坏土壤的环境和健康,但定期对土壤进行标准的实验室测试以确定氮(主要是 NH 和 NO)水平的做法并不常见。在这里,我们证明了在使用点测量 NH 的同时,结合土壤电导率、pH 值、易于获取的天气和时间数据,可以使用机器学习模型即时预测土壤中 NO 的水平(R = 0.70)。长短期记忆递归神经网络模型还可以从第一天的单次测量中,在未知天气条件下,预测未来 12 天内 NH 和 NO 的水平,其决定系数[Formula: see text]和均方根误差[Formula: see text]。我们基于机器学习的方法消除了对专用仪器来确定土壤中 NO 水平的需求。氮素土壤养分可以被准确地测定和预测,从而可以预测气候对施肥计划的影响,并调整作物需求的时间,减少过度施肥,同时提高作物产量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验