Suppr超能文献

一项使用LandscapeDNDC对欧洲不同农业地点减少氧化亚氮排放和硝酸盐淋失的建模研究。

A modeling study on mitigation of N2O emissions and NO3 leaching at different agricultural sites across Europe using LandscapeDNDC.

作者信息

Molina-Herrera Saúl, Haas Edwin, Klatt Steffen, Kraus David, Augustin Jürgen, Magliulo Vincenzo, Tallec Tiphaine, Ceschia Eric, Ammann Christof, Loubet Benjamin, Skiba Ute, Jones Stephanie, Brümmer Christian, Butterbach-Bahl Klaus, Kiese Ralf

机构信息

Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK-IFU), Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany.

Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK-IFU), Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany.

出版信息

Sci Total Environ. 2016 May 15;553:128-140. doi: 10.1016/j.scitotenv.2015.12.099. Epub 2016 Feb 22.

Abstract

The identification of site-specific agricultural management practices in order to maximize yield while minimizing environmental nitrogen losses remains in the center of environmental pollution research. Here, we used the biogeochemical model LandscapeDNDC to explore different agricultural practices with regard to their potential to reduce soil N2O emissions and NO3 leaching while maintaining yields. In a first step, the model was tested against observations of N2O emissions, NO3 leaching, soil micrometeorology as well as crop growth for eight European cropland and grassland sites. Across sites, LandscapeDNDC predicts very well mean N2O emissions (r(2)=0.99) and simulates the magnitude and general temporal dynamics of soil inorganic nitrogen pools. For the assessment of site-specific mitigation potentials of environmental nitrogen losses a Monte Carlo optimization technique considering different agricultural management options (i.e., timing of planting, harvest and fertilization, amount of applied fertilizer as well as residue management) was used. The identified optimized field management practices reduce N2O emissions and NO3 leaching from croplands on average by 21% and 31%, respectively. Likewise, average reductions of 55% for N2O emissions and 16% for NO3 leaching are estimated for grasslands. For mitigating environmental loss - while maintaining yield levels - it was most important to reduce fertilizer application rates by in average 10%. Our analyses indicate that yield scaled N2O emissions and NO3 leaching indicate possible improvements of nitrogen use efficiencies in European farming systems. Moreover, the applied optimization approach can be used also in a prognostic way to predict optimal timings and fertilization options (rates and splitting) upon accurate weather forecasts combined with the knowledge of modeled soil nutrient availability and plant nitrogen demand.

摘要

确定特定地点的农业管理措施,以在最大限度提高产量的同时尽量减少环境氮损失,仍然是环境污染研究的核心。在此,我们使用生物地球化学模型LandscapeDNDC,探讨不同农业措施在减少土壤N2O排放和NO3淋失同时维持产量方面的潜力。第一步,针对欧洲8个农田和草地站点的N2O排放、NO3淋失、土壤微气象以及作物生长观测数据对该模型进行了测试。在各个站点,LandscapeDNDC对平均N2O排放预测得非常好(r(2)=0.99),并模拟了土壤无机氮库的大小和一般时间动态。为了评估特定地点减少环境氮损失的缓解潜力,使用了考虑不同农业管理选项(即种植、收获和施肥时间、施肥量以及残茬管理)的蒙特卡洛优化技术。确定的优化田间管理措施使农田的N2O排放和NO3淋失平均分别减少了21%和31%。同样,估计草地的N2O排放平均减少55%,NO3淋失减少16%。为了减轻环境损失——同时维持产量水平——平均将施肥量减少10%最为重要。我们的分析表明,产量尺度下的N2O排放和NO3淋失表明欧洲农业系统中氮利用效率可能得到提高。此外,所应用的优化方法还可以以预测的方式用于结合精确天气预报以及模拟土壤养分有效性和植物氮需求知识来预测最佳时间和施肥选项(施用量和分次施肥)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验