Department of Bioengineering, Royal School of Mines, Imperial College London, London, SW7 2AZ, UK.
Department of Life Sciences, Royal School of Mines, Imperial College London, London, SW7 2AZ, UK.
Adv Sci (Weinh). 2024 Jun;11(23):e2400225. doi: 10.1002/advs.202400225. Epub 2024 Mar 26.
Accurate quantification of hypersensitive response (HR) programmed cell death is imperative for understanding plant defense mechanisms and developing disease-resistant crop varieties. Here, a phenotyping platform for rapid, continuous-time, and quantitative assessment of HR is demonstrated: Parallel Automated Spectroscopy Tool for Electrolyte Leakage (PASTEL). Compared to traditional HR assays, PASTEL significantly improves temporal resolution and has high sensitivity, facilitating detection of microscopic levels of cell death. Validation is performed by transiently expressing the effector protein AVRblb2 in transgenic Nicotiana benthamiana (expressing the corresponding resistance protein Rpi-blb2) to reliably induce HR. Detection of cell death is achieved at microscopic intensities, where leaf tissue appears healthy to the naked eye one week after infiltration. PASTEL produces large amounts of frequency domain impedance data captured continuously. This data is used to develop supervised machine-learning (ML) models for classification of HR. Input data (inclusive of the entire tested concentration range) is classified as HR-positive or negative with 84.1% mean accuracy (F1 score = 0.75) at 1 h and with 87.8% mean accuracy (F1 score = 0.81) at 22 h. With PASTEL and the ML models produced in this work, it is possible to phenotype disease resistance in plants in hours instead of days to weeks.
准确量化过敏反应(HR)程序性细胞死亡对于理解植物防御机制和开发抗病作物品种至关重要。本文展示了一种用于快速、连续时间和定量评估 HR 的表型分析平台:平行自动化电解质泄漏光谱技术(PASTEL)。与传统的 HR 测定方法相比,PASTEL 显著提高了时间分辨率,具有高灵敏度,有助于检测微观水平的细胞死亡。通过瞬时表达效应蛋白 AVRblb2 在转基因烟草(表达相应的抗性蛋白 Rpi-blb2)中可靠诱导 HR 进行验证。在微观强度下检测到细胞死亡,叶片组织在浸润后一周肉眼看起来仍然健康。PASTEL 产生大量连续捕获的频域阻抗数据。这些数据用于开发监督机器学习(ML)模型,以对 HR 进行分类。输入数据(包括整个测试浓度范围)在 1 小时时以 84.1%的平均准确率(F1 得分为 0.75),在 22 小时时以 87.8%的平均准确率(F1 得分为 0.81)被分类为 HR 阳性或阴性。使用 PASTEL 和本工作中生成的 ML 模型,可以在数小时内而不是数天到数周内对植物的抗病性进行表型分析。