Suppr超能文献

基于 QSAR、ADMET、生物活性和分子对接鉴定有潜力的乙酰胆碱酯酶抑制性杂环化合物。

Identification of promising inhibitory heterocyclic compounds against acetylcholinesterase using QSAR, ADMET, biological activity, and molecular docking.

机构信息

Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.

出版信息

Comput Biol Chem. 2023 Jun;104:107872. doi: 10.1016/j.compbiolchem.2023.107872. Epub 2023 Apr 18.

Abstract

Heterocyclic compounds exert diverse functions, especially acetylcholinesterase (AChE) inhibition. Thus, identifying the association between their detailed structures and biological activities is important to the development of novel medications for Alzheimer's disease (AD) treatment. In this study, diverse sets of 120 potent and selective heterocyclic compounds (-log[the half‑maximal inhibitory concentration] (pIC50) values ranged from 8.01 to 12.50) were used to develop quantitative structure-activity relationship (QSAR) models using multiple linear regression (MLR), multiple nonlinear regression (MNLR), Bayesian model average (BMA), and artificial neural network (ANN) models. The models' robustness and stability have been assessed using both internal and external methodology. ANN outperforms MLR, MNLR, and BMA according to external validation. The molecular descriptors incorporated into the model were in satisfactory correlation with the AChE receptor-ligand complex X-ray structures, making the model interpretable and predictive. Three selected compounds exert drug-like characteristics (pIC50 values ranged from 11.01 to 11.17). The binding affinity between the optimal compounds and the AChE receptor (RCSB ID 3LII) ranged from - 7.4 to - 8.8 kcal/mol. Remarkably, the pharmacokinetics, physicochemical properties, and biological activities of compound 25 (C23H32N2O2, PubChem CID 118727071, pIC50 value = 11.17) were found to be consistent with its therapeutic effects in AD due to its cholinergic and non-toxic nature, non-P-glycoprotein, high gastrointestinal absorption, and capability to penetrate the blood-brain barrier.

摘要

杂环化合物具有多种功能,特别是乙酰胆碱酯酶 (AChE) 抑制作用。因此,确定它们的详细结构与生物活性之间的关联对于开发用于治疗阿尔茨海默病 (AD) 的新型药物非常重要。在这项研究中,使用了 120 种不同的强效和选择性杂环化合物(-log[半最大抑制浓度](pIC50)值范围为 8.01 至 12.50)来开发定量构效关系(QSAR)模型,使用多元线性回归(MLR)、多元非线性回归(MNLR)、贝叶斯模型平均(BMA)和人工神经网络(ANN)模型。使用内部和外部方法评估了模型的稳健性和稳定性。根据外部验证,ANN 优于 MLR、MNLR 和 BMA。模型中纳入的分子描述符与 AChE 受体-配体复合物 X 射线结构具有良好的相关性,使模型具有可解释性和预测性。三种选定的化合物具有类药性(pIC50 值范围为 11.01 至 11.17)。最佳化合物与 AChE 受体(RCSB ID 3LII)的结合亲和力范围为-7.4 至-8.8 kcal/mol。值得注意的是,化合物 25(C23H32N2O2,PubChem CID 118727071,pIC50 值=11.17)的药代动力学、物理化学性质和生物活性与其在 AD 中的治疗效果一致,这是因为它具有胆碱能和非毒性、非 P-糖蛋白、高胃肠道吸收能力和穿透血脑屏障的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验