Suppr超能文献

利用二硫醇调节ZnSe量子点的局部化学环境以实现光催化CO还原

Tuning the local chemical environment of ZnSe quantum dots with dithiols towards photocatalytic CO reduction.

作者信息

Sahm Constantin D, Ciotti Anna, Mates-Torres Eric, Badiani Vivek, Sokołowski Kamil, Neri Gaia, Cowan Alexander J, García-Melchor Max, Reisner Erwin

机构信息

Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd Cambridge CB2 1EW UK

School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green Dublin 2 Ireland.

出版信息

Chem Sci. 2022 Apr 11;13(20):5988-5998. doi: 10.1039/d2sc00890d. eCollection 2022 May 25.

Abstract

Sunlight-driven CO reduction to renewable fuels is a promising strategy towards a closed carbon cycle in a circular economy. For that purpose, colloidal quantum dots (QDs) have emerged as a versatile light absorber platform that offers many possibilities for surface modification strategies. Considerable attention has been focused on tailoring the local chemical environment of the catalytic site for CO reduction with chemical functionalities ranging from amino acids to amines, imidazolium, pyridines, and others. Here we show that dithiols, a class of organic compounds previously unexplored in the context of CO reduction, can enhance photocatalytic CO reduction on ZnSe QDs. A short dithiol (1,2-ethanedithiol) activates the QD surface for CO reduction accompanied by a suppression of the competing H evolution reaction. In contrast, in the presence of an immobilized Ni(cyclam) co-catalyst, a longer dithiol (1,6-hexanedithiol) accelerates CO reduction. H-NMR spectroscopy studies of the dithiol-QD surface interactions reveal a strong affinity of the dithiols for the QD surface accompanied by a solvation sphere governed by hydrophobic interactions. Control experiments with a series of dithiol analogues (monothiol, mercaptoalcohol) render the hydrophobic chemical environment unlikely as the sole contribution of the enhancement of CO reduction. Density functional theory (DFT) calculations provide a framework to rationalize the observed dithiol length dependent activity through the analysis of the non-covalent interactions between the dangling thiol moiety and the CO reduction intermediates at the catalytic site. This work therefore introduces dithiol capping ligands as a straightforward means to enhance CO reduction catalysis on both bare and co-catalyst modified QDs by engineering the particle's chemical environment.

摘要

阳光驱动的将一氧化碳还原为可再生燃料是实现循环经济中封闭碳循环的一项有前景的策略。为此,胶体量子点(QDs)已成为一种多功能光吸收平台,为表面改性策略提供了许多可能性。人们相当关注通过从氨基酸到胺、咪唑鎓、吡啶等化学官能团来调整催化位点的局部化学环境以实现一氧化碳还原。在这里,我们表明二硫醇,一类在一氧化碳还原背景下此前未被探索的有机化合物,可以增强在ZnSe量子点上的光催化一氧化碳还原。一种短链二硫醇(1,2 - 乙二硫醇)激活量子点表面以进行一氧化碳还原,同时抑制竞争性析氢反应。相比之下,在固定化的Ni(cyclam)助催化剂存在下,一种长链二硫醇(1,6 - 己二硫醇)加速一氧化碳还原。对二硫醇 - 量子点表面相互作用的核磁共振光谱研究揭示了二硫醇对量子点表面有很强的亲和力,同时伴随着由疏水相互作用控制的溶剂化层。用一系列二硫醇类似物(单硫醇、巯基醇)进行的对照实验表明,疏水化学环境不太可能是增强一氧化碳还原的唯一因素。密度泛函理论(DFT)计算提供了一个框架,通过分析催化位点上悬空硫醇部分与一氧化碳还原中间体之间的非共价相互作用,来合理化观察到的二硫醇长度依赖性活性。因此,这项工作引入了二硫醇封端配体,作为一种通过设计粒子的化学环境来增强在裸量子点和助催化剂修饰的量子点上一氧化碳还原催化作用的直接方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c70c/9132019/47522b843cb3/d2sc00890d-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验