文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

连续流闪光纳米沉淀法可规模化制备载药量高达 90%的核壳型纳米粒。

Sequential Flash NanoPrecipitation for the scalable formulation of stable core-shell nanoparticles with core loadings up to 90.

机构信息

Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States.

Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States; Princeton Materials Institute, Princeton University, Princeton, NJ 08544, United States.

出版信息

Int J Pharm. 2023 Jun 10;640:122985. doi: 10.1016/j.ijpharm.2023.122985. Epub 2023 Apr 29.


DOI:10.1016/j.ijpharm.2023.122985
PMID:37121493
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10262063/
Abstract

Flash NanoPrecipitation (FNP) is a scalable, single-step process that uses rapid mixing to prepare nanoparticles with a hydrophobic core and amphiphilic stabilizing shell. Because the two steps of particle self-assembly - (1) core nucleation and growth and (2) adsorption of a stabilizing polymer onto the growing core surface - occur simultaneously during FNP, nanoparticles formulated at core loadings above approximately 70% typically exhibit poor stability or do not form at all. Additionally, a fundamental limit on the concentration of total solids that can be introduced into the FNP process has been reported previously. These limits are believed to share a common mechanism: entrainment of the stabilizing polymer into the growing particle core, leading to destabilization and aggregation. Here, we demonstrate a variation of FNP which separates the nucleation and stabilization steps of particle formation into separate sequential mixers. This scheme allows the hydrophobic core to nucleate and grow in the first mixing chamber unimpeded by adsorption of the stabilizing polymer, which is later introduced to the growing nuclei in the second mixer. Using this Sequential Flash NanoPrecipitation (SNaP) technique, we formulate stable nanoparticles with up to 90% core loading by mass and at 6-fold higher total input solids concentrations than typically reported.

摘要

闪蒸纳米沉淀(FNP)是一种可扩展的单步工艺,利用快速混合制备具有疏水性内核和两亲性稳定壳的纳米颗粒。由于在 FNP 过程中,颗粒自组装的两个步骤 - (1) 核的成核和生长和 (2) 稳定聚合物吸附到生长的核表面 - 同时发生,因此在核心负载高于约 70%时,所配制的纳米颗粒通常表现出较差的稳定性或根本无法形成。此外,先前已经报道了在 FNP 过程中可以引入的总固体浓度的基本限制。这些限制被认为具有共同的机制:将稳定聚合物夹带在生长的颗粒核心中,导致失稳和聚集。在这里,我们展示了 FNP 的一种变体,将颗粒形成的成核和稳定步骤分离到单独的顺序混合器中。该方案允许疏水性内核在第一个混合室中不受稳定聚合物吸附的阻碍而进行成核和生长,然后在第二个混合器中将稳定聚合物引入到生长的核中。使用这种顺序闪蒸纳米沉淀(SNaP)技术,我们通过质量高达 90%的核心负载和比通常报道的高 6 倍的总输入固体浓度来配制稳定的纳米颗粒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/631d/10262063/1fde511790be/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/631d/10262063/f9a42a72b6cc/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/631d/10262063/25401df3d07b/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/631d/10262063/c13335278069/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/631d/10262063/eebbd6e5e216/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/631d/10262063/1fde511790be/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/631d/10262063/f9a42a72b6cc/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/631d/10262063/25401df3d07b/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/631d/10262063/c13335278069/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/631d/10262063/eebbd6e5e216/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/631d/10262063/1fde511790be/gr4.jpg

相似文献

[1]
Sequential Flash NanoPrecipitation for the scalable formulation of stable core-shell nanoparticles with core loadings up to 90.

Int J Pharm. 2023-6-10

[2]
Flash NanoPrecipitation for the Encapsulation of Hydrophobic and Hydrophilic Compounds in Polymeric Nanoparticles.

J Vis Exp. 2019-1-7

[3]
Flash nanoprecipitation: particle structure and stability.

Mol Pharm. 2013-11-4

[4]
Using Flash Nanoprecipitation To Produce Highly Potent and Stable Cellax Nanoparticles from Amphiphilic Polymers Derived from Carboxymethyl Cellulose, Polyethylene Glycol, and Cabazitaxel.

Mol Pharm. 2017-10-5

[5]
Encapsulation of PI3K Inhibitor LY294002 within Polymer Nanoparticles Using Ion Pairing Flash Nanoprecipitation.

Pharmaceutics. 2023-4-6

[6]
A simple confined impingement jets mixer for flash nanoprecipitation.

J Pharm Sci. 2012-7-6

[7]
Flash nanoprecipitation: prediction and enhancement of particle stability via drug structure.

Mol Pharm. 2014-3-3

[8]
Design of a Small-Scale Multi-Inlet Vortex Mixer for Scalable Nanoparticle Production and Application to the Encapsulation of Biologics by Inverse Flash NanoPrecipitation.

J Pharm Sci. 2018-5-15

[9]
Facile assembly and loading of theranostic polymersomes via multi-impingement flash nanoprecipitation.

J Control Release. 2017-7-20

[10]
Interplay between Amphiphilic Stabilizers and Cholesterol in the Stabilization of Itraconazole Nanoparticles Prepared by Flash Nanoprecipitation.

Mol Pharm. 2018-12-19

引用本文的文献

[1]
Process and Formulation Parameters Governing Polymeric Microparticle Formation via Sequential NanoPrecipitation (SNaP).

ACS Eng Au. 2025-7-4

[2]
Design of Modular, 3D-Printed Millifluidic Mixers to Enable Sequential NanoPrecipitation (SNaP) for the Tunable Synthesis of Drug-Loaded Nanoparticles and Microparticles.

Adv Mater Technol. 2025-1-8

[3]
Enhanced Nanoprecipitation Method for the Production of PLGA Nanoparticles for Oncology Applications.

AAPS J. 2025-6-27

[4]
Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024

[5]
Flash nanoprecipitation assisted self-assembly of ionizable lipid nanoparticles for nucleic acid delivery.

Nanoscale. 2024-4-4

[6]
Flash nanoprecipitation allows easy fabrication of pH-responsive acetalated dextran nanoparticles for intracellular release of payloads.

Discov Nano. 2024-1-4

[7]
Flash NanoPrecipitation as an Agrochemical Nanocarrier Formulation Platform: Phloem Uptake and Translocation after Foliar Administration.

ACS Agric Sci Technol. 2023-10-17

[8]
Triplet-Triplet Annihilation Upconversion-Based Oxygen Sensors to Overcome the Limitation of Autofluorescence.

ACS Sens. 2023-8-25

本文引用的文献

[1]
Development of an Release Assay for Low-Density Cannabidiol Nanoparticles Prepared by Flash NanoPrecipitation.

Mol Pharm. 2022-5-2

[2]
Drug delivery systems for RNA therapeutics.

Nat Rev Genet. 2022-5

[3]
Nanoprecipitation as a simple and straightforward process to create complex polymeric colloidal morphologies.

Adv Colloid Interface Sci. 2021-8

[4]
Engineering Nanoparticulate Organic Photocatalysts via a Scalable Flash Nanoprecipitation Process for Efficient Hydrogen Production.

Angew Chem Int Ed Engl. 2021-7-5

[5]
Sustained-release ketamine-loaded nanoparticles fabricated by sequential nanoprecipitation.

Int J Pharm. 2020-5-15

[6]
Translational formulation of nanoparticle therapeutics from laboratory discovery to clinical scale.

J Transl Med. 2019-6-14

[7]
Spray drying OZ439 nanoparticles to form stable, water-dispersible powders for oral malaria therapy.

J Transl Med. 2019-3-22

[8]
Amorphous nanoparticles by self-assembly: processing for controlled release of hydrophobic molecules.

Soft Matter. 2019-3-13

[9]
Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles.

Acta Pharm Sin B. 2019-1

[10]
Flash NanoPrecipitation for the Encapsulation of Hydrophobic and Hydrophilic Compounds in Polymeric Nanoparticles.

J Vis Exp. 2019-1-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索