Zhang Ye, Trnkova Petra, Toshito Toshiyuki, Heijmen Ben, Richter Christian, Aznar Marianne, Albertini Francesca, Bolsi Alexandra, Daartz Juliane, Bertholet Jenny, Knopf Antje
Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.
Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria.
Phys Imaging Radiat Oncol. 2023 Apr 11;26:100439. doi: 10.1016/j.phro.2023.100439. eCollection 2023 Apr.
Organ motion compromises accurate particle therapy delivery. This study reports on the practice patterns for real-time intrafractional motion-management in particle therapy to evaluate current clinical practice and wishes and barriers to implementation.
An institutional questionnaire was distributed to particle therapy centres worldwide (7/2020-6/2021) asking which type(s) of real-time respiratory motion management (RRMM) methods were used, for which treatment sites, and what were the wishes and barriers to implementation. This was followed by a three-round DELPHI consensus analysis (10/2022) to define recommendations on required actions and future vision. With 70 responses from 17 countries, response rate was 100% for Europe (23/23 centres), 96% for Japan (22/23) and 53% for USA (20/38).
Of the 68 clinically operational centres, 85% used RRMM, with 41% using both rescanning and active methods. Sixty-four percent used active-RRMM for at least one treatment site, mostly with gating guided by an external marker. Forty-eight percent of active-RRMM users wished to expand or change their RRMM technique. The main barriers were technical limitations and limited resources. From the DELPHI analysis, optimisation of rescanning parameters, improvement of motion models, and pre-treatment 4D evaluation were unanimously considered clinically important future focus. 4D dose calculation was identified as the top requirement for future commercial treatment planning software.
A majority of particle therapy centres have implemented RRMM. Still, further development and clinical integration were desired by most centres. Joint industry, clinical and research efforts are needed to translate innovation into efficient workflows for broad-scale implementation.
器官运动影响粒子治疗的精确给药。本研究报告了粒子治疗中实时分次内运动管理的实践模式,以评估当前的临床实践以及实施的意愿和障碍。
向全球粒子治疗中心发放了一份机构调查问卷(2020年7月 - 2021年6月),询问使用了哪种类型的实时呼吸运动管理(RRMM)方法、用于哪些治疗部位,以及实施的意愿和障碍是什么。随后进行了三轮德尔菲共识分析(2022年10月),以确定关于所需行动和未来愿景的建议。来自17个国家的70份回复中,欧洲的回复率为100%(23个中心中的23个),日本为96%(23个中的22个),美国为53%(38个中的20个)。
在68个临床运营中心中,85%使用了RRMM,其中41%同时使用了重新扫描和主动方法。64%的中心至少在一个治疗部位使用主动RRMM,大多采用外部标记引导的门控技术。48%的主动RRMM使用者希望扩展或改变他们的RRMM技术。主要障碍是技术限制和资源有限。从德尔菲分析来看,重新扫描参数的优化、运动模型的改进以及治疗前的4D评估被一致认为是未来临床上重要的重点。4D剂量计算被确定为未来商业治疗计划软件的首要需求。
大多数粒子治疗中心已实施RRMM。不过,大多数中心仍期望进一步发展和临床整合。需要行业、临床和研究的共同努力,将创新转化为高效的工作流程以便广泛实施。