Suppr超能文献

人工智能在胰腺癌风险分层及早期检测中的潜力。

Potential of artificial intelligence in the risk stratification for and early detection of pancreatic cancer.

作者信息

Tovar Daniela R, Rosenthal Michael H, Maitra Anirban, Koay Eugene J

机构信息

Department of Gastrointestinal Radiation Oncology, The University of Texas, Anderson Cancer Center, Houston, TX 77030, USA.

Department of Radiology, Dana Farber Cancer Institute, Boston, MA 02215, USA.

出版信息

Artif Intell Surg. 2023;3(1):14-26. doi: 10.20517/ais.2022.38. Epub 2023 Mar 20.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is the third most lethal cancer in the United States, with a 5-year life expectancy of 11%. Most symptoms manifest at an advanced stage of the disease when surgery is no longer appropriate. The dire prognosis of PDAC warrants new strategies to improve the outcomes of patients, and early detection has garnered significant attention. However, early detection of PDAC is most often incidental, emphasizing the importance of developing new early detection screening strategies. Due to the low incidence of the disease in the general population, much of the focus for screening has turned to individuals at high risk of PDAC. This enriches the screening population and balances the risks associated with pancreas interventions. The cancers that are found in these high-risk individuals by MRI and/or EUS screening show favorable 73% 5-year overall survival. Even with the emphasis on screening in enriched high-risk populations, only a minority of incident cancers are detected this way. One strategy to improve early detection outcomes is to integrate artificial intelligence (AI) into biomarker discovery and risk models. This expert review summarizes recent publications that have developed AI algorithms for the applications of risk stratification of PDAC using radiomics and electronic health records. Furthermore, this review illustrates the current uses of radiomics and biomarkers in AI for early detection of PDAC. Finally, various challenges and potential solutions are highlighted regarding the use of AI in medicine for early detection purposes.

摘要

胰腺导管腺癌(PDAC)是美国致死率第三高的癌症,5年生存率为11%。大多数症状在疾病晚期出现,此时手术已不再合适。PDAC的严峻预后促使人们寻求新的策略来改善患者的治疗效果,早期检测受到了广泛关注。然而,PDAC的早期检测大多是偶然发现的,这凸显了开发新的早期检测筛查策略的重要性。由于普通人群中该疾病的发病率较低,筛查的重点大多转向了PDAC高危个体。这使得筛查人群更加集中,并平衡了胰腺干预相关的风险。通过MRI和/或EUS筛查在这些高危个体中发现的癌症,其5年总生存率达73%,情况较好。即便重点是对富集的高危人群进行筛查,但通过这种方式检测到的新发癌症仍只占少数。改善早期检测结果的一种策略是将人工智能(AI)应用于生物标志物发现和风险模型。这篇专家综述总结了最近的一些出版物,这些出版物开发了利用放射组学和电子健康记录对PDAC进行风险分层应用的AI算法。此外,本综述阐述了放射组学和生物标志物在AI用于PDAC早期检测方面的当前应用。最后,强调了在医学中使用AI进行早期检测所面临的各种挑战以及潜在的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bea/10141523/54fc0c85f4d8/nihms-1886228-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验