Suppr超能文献

遗传编程在时间序列数据驱动建模中的升级。

Upgrades of Genetic Programming for Data-Driven Modeling of Time Series.

机构信息

Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova, Italy Istituto per la Scienza e la Tecnologia dei Plasmi, CNR, Padova, Italy

Department of Industrial Engineering, University of Rome "Tor Vergata," via del Politecnico 1, Roma, Italy

出版信息

Evol Comput. 2023 Dec 1;31(4):401-432. doi: 10.1162/evco_a_00330.

Abstract

In many engineering fields and scientific disciplines, the results of experiments are in the form of time series, which can be quite problematic to interpret and model. Genetic programming tools are quite powerful in extracting knowledge from data. In this work, several upgrades and refinements are proposed and tested to improve the explorative capabilities of symbolic regression (SR) via genetic programming (GP) for the investigation of time series, with the objective of extracting mathematical models directly from the available signals. The main task is not simply prediction but consists of identifying interpretable equations, reflecting the nature of the mechanisms generating the signals. The implemented improvements involve almost all aspects of GP, from the knowledge representation and the genetic operators to the fitness function. The unique capabilities of genetic programming, to accommodate prior information and knowledge, are also leveraged effectively. The proposed upgrades cover the most important applications of empirical modeling of time series, ranging from the identification of autoregressive systems and partial differential equations to the search of models in terms of dimensionless quantities and appropriate physical units. Particularly delicate systems to identify, such as those showing hysteretic behavior or governed by delayed differential equations, are also addressed. The potential of the developed tools is substantiated with both a battery of systematic numerical tests with synthetic signals and with applications to experimental data.

摘要

在许多工程领域和科学学科中,实验结果是以时间序列的形式呈现的,这对于解释和建模来说可能是相当成问题的。遗传编程工具在从数据中提取知识方面非常强大。在这项工作中,提出并测试了几种升级和改进方法,以通过遗传编程(GP)提高符号回归(SR)的探索能力,以便从可用信号中直接提取数学模型。主要任务不是简单的预测,而是识别可解释的方程,反映产生信号的机制的性质。实施的改进几乎涉及 GP 的所有方面,从知识表示和遗传算子到适应度函数。遗传编程的独特能力,以适应先验信息和知识,也得到了有效利用。所提出的升级涵盖了时间序列经验建模的最重要应用,从自回归系统和偏微分方程的识别到无量纲量和适当物理单位模型的搜索。特别难以识别的系统,如表现出滞后行为或由时滞微分方程控制的系统,也得到了处理。通过对合成信号进行一系列系统的数值测试和对实验数据的应用,证明了所开发工具的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验