Suppr超能文献

基于物理信息的遗传编程,用于从稀缺且有噪声的数据中发现偏微分方程。

Physics-informed genetic programming for discovery of partial differential equations from scarce and noisy data.

作者信息

Cohen Benjamin G, Beykal Burcu, Bollas George

机构信息

Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, 06269, CT, USA.

Center for Clean Energy Engineering, University of Connecticut, Storrs, 06269, CT, USA.

出版信息

J Comput Phys. 2024 Oct 1;514. doi: 10.1016/j.jcp.2024.113261. Epub 2024 Jul 8.

Abstract

A novel framework is proposed that utilizes symbolic regression via genetic programming to identify free-form partial differential equations from scarce and noisy data. The framework successfully identified ground truth models for four synthetic systems (an isothermal plug flow reactor, a continuously stirred tank reactor, a nonisothermal reactor, and viscous flow governed by Burgers' equation) from time-variant data collected at one location. A comparative analysis against the so-called weak Sparse Identification of Nonlinear Dynamics (SINDy) demonstrated the proposed framework's superior ability to identify meaningful partial differential equation (PDE) models when data was scarce. The framework was further tested for robustness to noise and scarcity, showing successful model recovery from as few as eight time series data points collected at a single point in space with 50% noise. These results emphasize the potential of the proposed framework for the discovery of PDE models when data collection is expensive or otherwise difficult.

摘要

提出了一种新颖的框架,该框架通过遗传编程利用符号回归从稀缺且有噪声的数据中识别自由形式的偏微分方程。该框架成功地从在一个位置收集的时变数据中识别出了四个合成系统(等温活塞流反应器、连续搅拌釜式反应器、非等温反应器以及由伯格斯方程控制的粘性流)的真实模型。与所谓的弱非线性动力学稀疏识别(SINDy)进行的对比分析表明,在数据稀缺时,所提出的框架具有识别有意义的偏微分方程(PDE)模型的卓越能力。该框架还针对噪声和稀缺性的鲁棒性进行了测试,结果表明,从在空间中的单个点收集的低至八个带有50%噪声的时间序列数据点中,能够成功恢复模型。这些结果强调了所提出的框架在数据收集成本高昂或存在其他困难时发现PDE模型的潜力。

相似文献

4
WEAK SINDY FOR PARTIAL DIFFERENTIAL EQUATIONS.偏微分方程的弱辛迪方法
J Comput Phys. 2021 Oct 15;443. doi: 10.1016/j.jcp.2021.110525. Epub 2021 Jun 23.
9
Boundary Control of 2-D Burgers' PDE: An Adaptive Dynamic Programming Approach.二维伯格斯偏微分方程的边界控制:一种自适应动态规划方法。
IEEE Trans Neural Netw Learn Syst. 2018 Aug;29(8):3669-3681. doi: 10.1109/TNNLS.2017.2736786. Epub 2017 Aug 29.

本文引用的文献

2
WEAK SINDy: GALERKIN-BASED DATA-DRIVEN MODEL SELECTION.弱稀疏识别(SINDy):基于伽辽金法的数据驱动模型选择
Multiscale Model Simul. 2021;19(3):1474-1497. doi: 10.1137/20m1343166. Epub 2021 Sep 7.
6
WEAK SINDY FOR PARTIAL DIFFERENTIAL EQUATIONS.偏微分方程的弱辛迪方法
J Comput Phys. 2021 Oct 15;443. doi: 10.1016/j.jcp.2021.110525. Epub 2021 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验