Suppr超能文献

利用物理建模方法探索植物叶褥的双重功能。

Exploring the Dual Functionality of Plant Pulvini Using a Physical Modeling Approach.

机构信息

Department of Ecology and Evolutionary Biology, University of California Irvine, 321 Steinhaus Hall, Irvine, CA 92617, USA.

出版信息

Integr Comp Biol. 2023 Dec 29;63(6):1331-1339. doi: 10.1093/icb/icad018.

Abstract

Pulvini are plant motor organs that fulfill two conflicting mechanical roles. At rest, pulvini function as rigid beams that support the cantilevered weight of leafy appendages. During thigmonastic (touch-induced) or nyctinastic ("sleep"-induced) plant movements, however, pulvini function as flexible joints capable of active bending. I hypothesized that the ability to alternate between these roles emerges from the interaction of two structural features of pulvini: anisotropically reinforced parenchyma cells comprising the body of the pulvinus and a longitudinally stiff but flexurally pliant vascular bundle running through the pulvinus core. To investigate how these two components might interact within biological pulvini, I built a set of pulvinus-inspired physical models with varying combinations of these elements present. I compared the abilities of the models to (1) resist imposed bending deformation (i.e., act as rigid beams) and (2) exhibit bending deformation when asymmetrically pressurized (i.e., act as actively deformable joints). Pulvinus models displayed the greatest ability to resist bending deformation when both an anisotropically reinforced parenchyma and a vasculature-like core were present. Disruption of either element reduced hydrostatic fluid pressures developed within the models, resulting in a decreased ability to resist externally applied forces. When differentially pressurized to induce active bending, the degree of bending achieved varied widely between models with and without adequately reinforced parenchyma elements. Bending, however, was not influenced by the presence of a vasculature-like core. These findings suggest that biological pulvini achieve their dual functionality by pairing anisotropically reinforced parenchyma tissues with a longitudinally stiff but flexurally pliant vascular core. Together, these elements compose a hydrostatic skeleton within the pulvinus that strongly resists external deformation when pressurized, but that bends easily when the balance of fluid pressures within it is altered. These results illustrate the emergent nature of pulvinus motor abilities and highlight structural specialization as an important aspect of pulvinus physiology.

摘要

叶枕是植物的运动器官,具有两种相互矛盾的机械功能。在静止状态下,叶枕充当刚性梁,支撑着多叶附属物的悬臂重量。然而,在触发性(触碰诱导)或感夜性(“睡眠”诱导)植物运动期间,叶枕充当灵活的关节,能够主动弯曲。我假设,在这些角色之间交替的能力源于叶枕的两个结构特征的相互作用:由构成叶枕主体的各向异性增强的薄壁细胞,以及贯穿叶枕核心的纵向刚性但弯曲柔韧的维管束。为了研究这两个组件如何在生物叶枕中相互作用,我构建了一组具有不同这些元素组合的叶枕启发式物理模型。我比较了模型的以下两个能力:(1)抵抗施加的弯曲变形(即充当刚性梁),(2)在不对称加压时表现出弯曲变形(即充当主动可变形关节)。当存在各向异性增强的薄壁组织和类似于血管的核心时,叶枕模型显示出最大的抵抗弯曲变形的能力。破坏任何一个元素都会降低模型内的静水压力,导致抵抗外部作用力的能力降低。当不对称地加压以诱导主动弯曲时,具有和不具有充分增强的薄壁组织元件的模型之间的弯曲程度差异很大。然而,弯曲不受类似于血管的核心的存在的影响。这些发现表明,生物叶枕通过将各向异性增强的薄壁组织与纵向刚性但弯曲柔韧的血管核心配对来实现其双重功能。这些元素共同构成了叶枕内的静压骨架,当受到压力时,它强烈抵抗外部变形,但当内部流体压力平衡发生变化时,它很容易弯曲。这些结果说明了叶枕运动能力的涌现性质,并强调了结构特化是叶枕生理学的一个重要方面。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验