Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, 08193, Bellaterra, Spain.
Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Barcelona, Spain.
Genet Sel Evol. 2023 May 1;55(1):29. doi: 10.1186/s12711-023-00803-4.
Gut microbial composition plays an important role in numerous traits, including immune response. Integration of host genomic information with microbiome data is a natural step in the prediction of complex traits, although methods to optimize this are still largely unexplored. In this paper, we assess the impact of different modelling strategies on the predictive capacity for six porcine immunocompetence traits when both genotype and microbiota data are available.
We used phenotypic data on six immunity traits and the relative abundance of gut bacterial communities on 400 Duroc pigs that were genotyped for 70 k SNPs. We compared the predictive accuracy, defined as the correlation between predicted and observed phenotypes, of a wide catalogue of models: reproducing kernel Hilbert space (RKHS), Bayes C, and an ensemble method, using a range of priors and microbial clustering strategies. Combined (holobiont) models that include both genotype and microbiome data were compared with partial models that use one source of variation only.
Overall, holobiont models performed better than partial models. Host genotype was especially relevant for predicting adaptive immunity traits (i.e., concentration of immunoglobulins M and G), whereas microbial composition was important for predicting innate immunity traits (i.e., concentration of haptoglobin and C-reactive protein and lymphocyte phagocytic capacity). None of the models was uniformly best across all traits. We observed a greater variability in predictive accuracies across models when microbiability (the variance explained by the microbiome) was high. Clustering microbial abundances did not necessarily increase predictive accuracy.
Gut microbiota information is useful for predicting immunocompetence traits, especially those related to innate immunity. Modelling microbiome abundances deserves special attention when microbiability is high. Clustering microbial data for prediction is not recommended by default.
肠道微生物组成在许多特征中发挥着重要作用,包括免疫反应。将宿主基因组信息与微生物组数据整合是预测复杂特征的自然步骤,尽管优化这些方法的方法在很大程度上仍未得到探索。在本文中,我们评估了在同时获得基因型和微生物组数据的情况下,不同建模策略对六种猪免疫能力性状的预测能力的影响。
我们使用了 400 头杜洛克猪的六种免疫性状的表型数据和肠道细菌群落的相对丰度数据,这些猪的基因型为 70kSNP。我们比较了广泛目录模型的预测准确性,定义为预测表型与观察表型之间的相关性:再现核希尔伯特空间(RKHS)、贝叶斯 C 和使用一系列先验和微生物聚类策略的集成方法。将包含基因型和微生物组数据的全组(整体)模型与仅使用一种变异源的部分模型进行比较。
总体而言,全组模型的性能优于部分模型。宿主基因型对于预测适应性免疫性状(即免疫球蛋白 M 和 G 的浓度)特别重要,而微生物组成对于预测先天免疫性状(即触珠蛋白和 C-反应蛋白的浓度和淋巴细胞吞噬能力)很重要。在所有性状中,没有一种模型始终是最佳的。当微生物可变性(微生物组解释的方差)较高时,我们观察到模型之间的预测准确性差异更大。聚类微生物丰度不一定会提高预测准确性。
肠道微生物组信息可用于预测免疫能力性状,特别是与先天免疫相关的性状。当微生物可变性较高时,建模微生物丰度应特别注意。默认情况下,不建议为预测而聚类微生物数据。