Department of Animal Science, North Carolina State University, Raleigh, NC 27607, USA.
Department of Agriculture, Food, Environment and Forestry, University of Florence, Firenze 50144, Italy.
J Anim Sci. 2022 Sep 1;100(9). doi: 10.1093/jas/skac231.
The microbial composition resemblance among individuals in a group can be summarized in a square covariance matrix and fitted in linear models. We investigated eight approaches to create the matrix that quantified the resemblance between animals based on the gut microbiota composition. We aimed to compare the performance of different methods in estimating trait microbiability and predicting growth and body composition traits in three pig breeds. This study included 651 purebred boars from either breed: Duroc (n = 205), Landrace (n = 226), and Large White (n = 220). Growth and body composition traits, including body weight (BW), ultrasound backfat thickness (BF), ultrasound loin depth (LD), and ultrasound intramuscular fat (IMF) content, were measured on live animals at the market weight (156 ± 2.5 d of age). Rectal swabs were taken from each animal at 158 ± 4 d of age and subjected to 16S rRNA gene sequencing. Eight methods were used to create the microbial similarity matrices, including 4 kernel functions (Linear Kernel, LK; Polynomial Kernel, PK; Gaussian Kernel, GK; Arc-cosine Kernel with one hidden layer, AK1), 2 dissimilarity methods (Bray-Curtis, BC; Jaccard, JA), and 2 ordination methods (Metric Multidimensional Scaling, MDS; Detrended Correspondence analysis, DCA). Based on the matrix used, microbiability estimates ranged from 0.07 to 0.21 and 0.12 to 0.53 for Duroc, 0.03 to 0.21 and 0.05 to 0.44 for Landrace, and 0.02 to 0.24 and 0.05 to 0.52 for Large White pigs averaged over traits in the model with sire, pen, and microbiome, and model with the only microbiome, respectively. The GK, JA, BC, and AK1 obtained greater microbiability estimates than the remaining methods across traits and breeds. Predictions were made within each breed group using four-fold cross-validation based on the relatedness of sires in each breed group. The prediction accuracy ranged from 0.03 to 0.18 for BW, 0.08 to 0.31 for BF, 0.21 to 0.48 for LD, and 0.04 to 0.16 for IMF when averaged across breeds. The BC, MDS, LK, and JA achieved better accuracy than other methods in most predictions. Overall, the PK and DCA exhibited the worst performance compared to other microbiability estimation and prediction methods. The current study shows how alternative approaches summarized the resemblance of gut microbiota composition among animals and contributed this information to variance component estimation and phenotypic prediction in swine.
个体间的微生物组成相似性可以用一个方差协方差矩阵来概括,并通过线性模型进行拟合。我们研究了八种方法来创建矩阵,这些方法基于肠道微生物群落组成来量化动物之间的相似性。我们旨在比较不同方法在估计性状微生物可变性和预测三个猪品种的生长和体组成性状方面的表现。这项研究包括来自三个品种的 651 头纯种公猪:杜洛克(n = 205)、长白猪(n = 226)和大白猪(n = 220)。在市场体重(156 ± 2.5 日龄)时,对活体动物进行体重(BW)、超声背膘厚度(BF)、超声腰脊深度(LD)和超声肌肉内脂肪(IMF)含量等生长和体组成性状的测量。在 158 ± 4 日龄时,从每只动物的直肠中取出拭子,并进行 16S rRNA 基因测序。我们使用了 8 种方法来创建微生物相似性矩阵,包括 4 种核函数(线性核函数 LK;多项式核函数 PK;高斯核函数 GK;带有一个隐藏层的反余弦核函数 AK1)、2 种距离度量方法(Bray-Curtis,BC;Jaccard,JA)和 2 种排序方法(度量多维尺度 MDS;去趋势对应分析 DCA)。基于所使用的矩阵,微生物可变性估计值在 sire、pen 和微生物组模型以及仅微生物组模型中,在性状上的平均值分别为 0.07 到 0.21 和 0.12 到 0.53,在杜洛克中为 0.03 到 0.21 和 0.05 到 0.44,在长白猪中为 0.02 到 0.24 和 0.05 到 0.52。在性状和品种上,GK、JA、BC 和 AK1 获得了比其余方法更高的微生物可变性估计值。基于每个品种组中 sire 的亲缘关系,在每个品种组内使用四重交叉验证进行预测。在品种间平均预测 BW 的准确性范围为 0.03 到 0.18,BF 为 0.08 到 0.31,LD 为 0.21 到 0.48,IMF 为 0.04 到 0.16。BC、MDS、LK 和 JA 在大多数预测中比其他方法具有更好的准确性。总体而言,PK 和 DCA 与其他微生物可变性估计和预测方法相比表现最差。本研究展示了替代方法如何总结动物肠道微生物群落组成的相似性,并将这些信息应用于猪的方差分量估计和表型预测。