Columbia University Department of Biomedical Informatics, NY, NY, USA.
Columbia University Irving Medical Center Department of Emergency Medicine, NY, NY, USA.
AMIA Annu Symp Proc. 2023 Apr 29;2022:805-814. eCollection 2022.
Few computational approaches exist for abstracting electronic health record (EHR) log files into clinically meaningful phenomena like clinician shifts. Because shifts are a fundamental unit of work recognized in clinical settings, shifts may serve as a primary unit of analysis in the study of documentation burden. We conducted a proof- of-concept study to investigate the feasibility of a novel approach using time series clustering to segment and infer clinician shifts from EHR log files. From 33,535,585 events captured between April-June 2021, we computationally identified 43,911 potential shifts among 2,285 (74.2%) emergency department nurses. On average, computationally-identified shifts were 10.6±3.1 hours long. Based on data distributions, we classified these shifts based on type: day, evening, night; and length: 12-hour, 8-hour, other. We validated our method through manual chart review of computationally-identified 12-hour shifts achieving 92.0% accuracy. Preliminary results suggest unsupervised clustering methods may be a reasonable approach for rapidly identifying clinician shifts.
目前很少有计算方法可以将电子健康记录 (EHR) 日志文件抽象为临床有意义的现象,例如医生轮班。由于轮班是临床环境中公认的基本工作单位,因此轮班可能是文档负担研究的主要分析单位。我们进行了一项概念验证研究,以调查一种使用时间序列聚类从 EHR 日志文件中分割和推断医生轮班的新方法的可行性。在 2021 年 4 月至 6 月期间捕获的 33535585 个事件中,我们通过计算在 2285 名(74.2%)急诊护士中识别出 43911 个潜在轮班。平均而言,计算出的轮班时长为 10.6±3.1 小时。根据数据分布,我们根据类型对这些轮班进行了分类:白天、晚上、夜间;和长度:12 小时、8 小时、其他。我们通过对计算出的 12 小时轮班进行手动图表审查来验证我们的方法,准确率达到 92.0%。初步结果表明,无监督聚类方法可能是快速识别医生轮班的合理方法。