Suppr超能文献

使用时间序列聚类从电子健康记录日志文件中分割和推断急诊护理班次。

Using Time Series Clustering to Segment and Infer Emergency Department Nursing Shifts from Electronic Health Record Log Files.

机构信息

Columbia University Department of Biomedical Informatics, NY, NY, USA.

Columbia University Irving Medical Center Department of Emergency Medicine, NY, NY, USA.

出版信息

AMIA Annu Symp Proc. 2023 Apr 29;2022:805-814. eCollection 2022.

Abstract

Few computational approaches exist for abstracting electronic health record (EHR) log files into clinically meaningful phenomena like clinician shifts. Because shifts are a fundamental unit of work recognized in clinical settings, shifts may serve as a primary unit of analysis in the study of documentation burden. We conducted a proof- of-concept study to investigate the feasibility of a novel approach using time series clustering to segment and infer clinician shifts from EHR log files. From 33,535,585 events captured between April-June 2021, we computationally identified 43,911 potential shifts among 2,285 (74.2%) emergency department nurses. On average, computationally-identified shifts were 10.6±3.1 hours long. Based on data distributions, we classified these shifts based on type: day, evening, night; and length: 12-hour, 8-hour, other. We validated our method through manual chart review of computationally-identified 12-hour shifts achieving 92.0% accuracy. Preliminary results suggest unsupervised clustering methods may be a reasonable approach for rapidly identifying clinician shifts.

摘要

目前很少有计算方法可以将电子健康记录 (EHR) 日志文件抽象为临床有意义的现象,例如医生轮班。由于轮班是临床环境中公认的基本工作单位,因此轮班可能是文档负担研究的主要分析单位。我们进行了一项概念验证研究,以调查一种使用时间序列聚类从 EHR 日志文件中分割和推断医生轮班的新方法的可行性。在 2021 年 4 月至 6 月期间捕获的 33535585 个事件中,我们通过计算在 2285 名(74.2%)急诊护士中识别出 43911 个潜在轮班。平均而言,计算出的轮班时长为 10.6±3.1 小时。根据数据分布,我们根据类型对这些轮班进行了分类:白天、晚上、夜间;和长度:12 小时、8 小时、其他。我们通过对计算出的 12 小时轮班进行手动图表审查来验证我们的方法,准确率达到 92.0%。初步结果表明,无监督聚类方法可能是快速识别医生轮班的合理方法。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验