University of Queensland, Australia linh.le, g.zuccon,
Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., Shenyang, China
AMIA Annu Symp Proc. 2023 Apr 29;2022:662-671. eCollection 2022.
Previous work on clinical relation extraction from free-text sentences leveraged information about semantic types from clinical knowledge bases as a part of entity representations. In this paper, we exploit additional evidence by also making use of . We encode the relation between a span of tokens matching a Unified Medical Language System (UMLS) concept and other tokens in the sentence. We implement our method and compare against different named entity recognition (NER) architectures (i.e., BiLSTM-CRF and BiLSTM-GCN-CRF) using different pre-trained clinical embeddings (i.e., BERT, BioBERT, UMLSBert). Our experimental results on clinical datasets show that in some cases NER effectiveness can be significantly improved by making use of domain-specific semantic type dependencies. Our work is also the first study generating a matrix encoding to make use of more than three dependencies in one pass for the NER task.
先前从自由文本句子中提取临床关系的工作利用了临床知识库中的语义类型信息作为实体表示的一部分。在本文中,我们还利用了额外的证据。我们对匹配统一医学语言系统 (UMLS) 概念的标记跨度与句子中其他标记之间的关系进行编码。我们实现了我们的方法,并使用不同的预训练临床嵌入(即 BERT、BioBERT、UMLSBert)针对不同的命名实体识别 (NER) 架构(即 BiLSTM-CRF 和 BiLSTM-GCN-CRF)进行了比较。我们在临床数据集上的实验结果表明,在某些情况下,通过利用特定于域的语义类型依赖关系,可以显著提高 NER 的有效性。我们的工作也是首次研究生成矩阵编码,以便在一次 NER 任务中利用超过三个依赖关系。