Suppr超能文献

2019年n2c2/OHNLP临床语义文本相似性赛道:概述

The 2019 n2c2/OHNLP Track on Clinical Semantic Textual Similarity: Overview.

作者信息

Wang Yanshan, Fu Sunyang, Shen Feichen, Henry Sam, Uzuner Ozlem, Liu Hongfang

机构信息

Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States.

Information Sciences and Technology, George Mason University, Fairfax, VA, United States.

出版信息

JMIR Med Inform. 2020 Nov 27;8(11):e23375. doi: 10.2196/23375.

Abstract

BACKGROUND

Semantic textual similarity is a common task in the general English domain to assess the degree to which the underlying semantics of 2 text segments are equivalent to each other. Clinical Semantic Textual Similarity (ClinicalSTS) is the semantic textual similarity task in the clinical domain that attempts to measure the degree of semantic equivalence between 2 snippets of clinical text. Due to the frequent use of templates in the Electronic Health Record system, a large amount of redundant text exists in clinical notes, making ClinicalSTS crucial for the secondary use of clinical text in downstream clinical natural language processing applications, such as clinical text summarization, clinical semantics extraction, and clinical information retrieval.

OBJECTIVE

Our objective was to release ClinicalSTS data sets and to motivate natural language processing and biomedical informatics communities to tackle semantic text similarity tasks in the clinical domain.

METHODS

We organized the first BioCreative/OHNLP ClinicalSTS shared task in 2018 by making available a real-world ClinicalSTS data set. We continued the shared task in 2019 in collaboration with National NLP Clinical Challenges (n2c2) and the Open Health Natural Language Processing (OHNLP) consortium and organized the 2019 n2c2/OHNLP ClinicalSTS track. We released a larger ClinicalSTS data set comprising 1642 clinical sentence pairs, including 1068 pairs from the 2018 shared task and 1006 new pairs from 2 electronic health record systems, GE and Epic. We released 80% (1642/2054) of the data to participating teams to develop and fine-tune the semantic textual similarity systems and used the remaining 20% (412/2054) as blind testing to evaluate their systems. The workshop was held in conjunction with the American Medical Informatics Association 2019 Annual Symposium.

RESULTS

Of the 78 international teams that signed on to the n2c2/OHNLP ClinicalSTS shared task, 33 produced a total of 87 valid system submissions. The top 3 systems were generated by IBM Research, the National Center for Biotechnology Information, and the University of Florida, with Pearson correlations of r=.9010, r=.8967, and r=.8864, respectively. Most top-performing systems used state-of-the-art neural language models, such as BERT and XLNet, and state-of-the-art training schemas in deep learning, such as pretraining and fine-tuning schema, and multitask learning. Overall, the participating systems performed better on the Epic sentence pairs than on the GE sentence pairs, despite a much larger portion of the training data being GE sentence pairs.

CONCLUSIONS

The 2019 n2c2/OHNLP ClinicalSTS shared task focused on computing semantic similarity for clinical text sentences generated from clinical notes in the real world. It attracted a large number of international teams. The ClinicalSTS shared task could continue to serve as a venue for researchers in natural language processing and medical informatics communities to develop and improve semantic textual similarity techniques for clinical text.

摘要

背景

语义文本相似性是通用英语领域中的一项常见任务,用于评估两个文本片段的潜在语义彼此等效的程度。临床语义文本相似性(ClinicalSTS)是临床领域中的语义文本相似性任务,旨在衡量两个临床文本片段之间的语义等效程度。由于电子健康记录系统中模板的频繁使用,临床记录中存在大量冗余文本,这使得ClinicalSTS对于下游临床自然语言处理应用(如临床文本摘要、临床语义提取和临床信息检索)中临床文本的二次使用至关重要。

目的

我们的目标是发布ClinicalSTS数据集,并激励自然语言处理和生物医学信息学社区解决临床领域中的语义文本相似性任务。

方法

我们在2018年组织了首个生物创意/OHNLP临床语义文本相似性共享任务,提供了一个真实世界的ClinicalSTS数据集。2019年,我们与国家自然语言处理临床挑战(n2c2)和开放健康自然语言处理(OHNLP)联盟合作继续开展共享任务,并组织了2019年n2c2/OHNLP临床语义文本相似性赛道。我们发布了一个更大的ClinicalSTS数据集,包含1642对临床句子,其中包括2018年共享任务中的1068对以及来自GE和Epic这两个电子健康记录系统的1006对新句子。我们将80%(1642/2054)的数据发布给参与团队,用于开发和微调语义文本相似性系统,并将其余20%(412/2054)用作盲测来评估他们的系统。该研讨会与2019年美国医学信息学会年度研讨会同期举行。

结果

在签约参加n2c2/OHNLP临床语义文本相似性共享任务的78个国际团队中,33个团队共提交了87份有效的系统报告。排名前三的系统分别由IBM研究公司、美国国家生物技术信息中心和佛罗里达大学生成,皮尔逊相关系数分别为r = 0.9010、r = 0.8967和r = 0.8864。大多数表现最佳的系统使用了先进的神经语言模型,如BERT和XLNet,以及深度学习中的先进训练模式,如预训练和微调模式以及多任务学习。总体而言,尽管训练数据中GE句子对的比例要大得多,但参与系统在Epic句子对上的表现优于GE句子对。

结论

2019年n2c2/OHNLP临床语义文本相似性共享任务专注于计算来自现实世界临床记录的临床文本句子的语义相似性。它吸引了大量国际团队。临床语义文本相似性共享任务可以继续作为自然语言处理和医学信息学社区的研究人员开发和改进临床文本语义文本相似性技术的场所。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4c1/7732706/737abca206e0/medinform_v8i11e23375_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验