University of California Irvine, Irvine, CA, USA.
University of California San Diego, La Jolla, USA.
AMIA Annu Symp Proc. 2023 Apr 29;2022:1072-1080. eCollection 2022.
One promising solution to address physician data entry needs is through the development of so-called "digital scribes," or tools which aim to automate clinical documentation via automatic speech recognition (ASR) of patient-clinician conversations. Evaluation of specialized ASR models in this domain, useful for understanding feasibility and development opportunities, has been difficult because most models have been under development. Following the commercial release of such models, we report an independent evaluation of four models, two general-purpose, and two for medical conversation with a corpus of 36 primary care conversations. We identify word error rates (WER) of 8.8%-10.5% and word-level diarization error rates (WDER) ranging from 1.8%-13.9%, which are generally lower than previous reports. The findings indicate that, while there is room for improvement, the performance of these specialized models, at least under ideal recording conditions, may be amenable to the development of downstream applications which rely on ASR of patient-clinician conversations.
解决医师数据录入需求的一个有前景的解决方案是通过开发所谓的“数字抄写员”,或者通过自动语音识别(ASR)自动记录医患对话的工具来实现。由于大多数模型仍在开发中,因此评估专门针对该领域的 ASR 模型(这对于理解可行性和开发机会很有用)一直很困难。在这些模型商业化发布之后,我们报告了对四个模型(两个通用模型和两个用于医疗对话的模型)的独立评估,该评估使用了 36 个初级保健对话的语料库。我们确定了 8.8%-10.5%的单词错误率(WER)和 1.8%-13.9%的单词级对话分割错误率(WDER),这些结果通常低于之前的报告。这些发现表明,虽然仍有改进的空间,但这些专门模型的性能,至少在理想的记录条件下,可能适合开发依赖于医患对话的 ASR 的下游应用程序。
J Am Med Inform Assoc. 2023-3-16
AMIA Annu Symp Proc. 2018-12-5
J Am Med Inform Assoc. 2020-5-1
J Am Med Inform Assoc. 2023-2-16
NPJ Digit Med. 2021-3-26
NPJ Digit Med. 2021-3-26
Patient Educ Couns. 2021-8
NPJ Digit Med. 2020-6-3
J Am Med Inform Assoc. 2020-5-1
NPJ Digit Med. 2019-11-22
J Am Med Inform Assoc. 2019-12-1
J Am Med Inform Assoc. 2019-10-1
NPJ Digit Med. 2018-10-16
JAMA Intern Med. 2019-6-1
AMIA Annu Symp Proc. 2018-12-5