van Buchem Marieke M, Boosman Hileen, Bauer Martijn P, Kant Ilse M J, Cammel Simone A, Steyerberg Ewout W
Department of Information Technology & Digital Innovation, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
CAIRELab, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
NPJ Digit Med. 2021 Mar 26;4(1):57. doi: 10.1038/s41746-021-00432-5.
The number of clinician burnouts is increasing and has been linked to a high administrative burden. Automatic speech recognition (ASR) and natural language processing (NLP) techniques may address this issue by creating the possibility of automating clinical documentation with a "digital scribe". We reviewed the current status of the digital scribe in development towards clinical practice and present a scope for future research. We performed a literature search of four scientific databases (Medline, Web of Science, ACL, and Arxiv) and requested several companies that offer digital scribes to provide performance data. We included articles that described the use of models on clinical conversational data, either automatically or manually transcribed, to automate clinical documentation. Of 20 included articles, three described ASR models for clinical conversations. The other 17 articles presented models for entity extraction, classification, or summarization of clinical conversations. Two studies examined the system's clinical validity and usability, while the other 18 studies only assessed their model's technical validity on the specific NLP task. One company provided performance data. The most promising models use context-sensitive word embeddings in combination with attention-based neural networks. However, the studies on digital scribes only focus on technical validity, while companies offering digital scribes do not publish information on any of the research phases. Future research should focus on more extensive reporting, iteratively studying technical validity and clinical validity and usability, and investigating the clinical utility of digital scribes.
临床医生职业倦怠的人数在增加,且与沉重的行政负担有关。自动语音识别(ASR)和自然语言处理(NLP)技术可能通过借助“数字书记员”实现临床文档自动化来解决这一问题。我们回顾了数字书记员在向临床实践发展过程中的现状,并提出了未来研究的范围。我们对四个科学数据库(Medline、Web of Science、ACL和Arxiv)进行了文献检索,并要求几家提供数字书记员的公司提供性能数据。我们纳入了描述在临床对话数据上使用模型(无论是自动转录还是手动转录)以实现临床文档自动化的文章。在纳入的20篇文章中,三篇描述了用于临床对话的ASR模型。其他17篇文章介绍了用于临床对话实体提取、分类或总结的模型。两项研究考察了系统的临床有效性和可用性,而其他18项研究仅评估了其模型在特定NLP任务上的技术有效性。一家公司提供了性能数据。最有前景的模型将上下文敏感词嵌入与基于注意力的神经网络结合使用。然而,关于数字书记员的研究仅关注技术有效性,而提供数字书记员的公司并未公布任何研究阶段的信息。未来的研究应侧重于更广泛的报告,迭代研究技术有效性、临床有效性和可用性,并研究数字书记员的临床效用。