Suppr超能文献

LRP5 高骨量突变导致肺泡骨积累和轻微的颅面改变。

The LRP5 high-bone-mass mutation causes alveolar bone accrual with minor craniofacial alteration.

机构信息

Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, Indiana, USA.

Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indiana, Indianapolis, USA.

出版信息

J Periodontal Res. 2023 Aug;58(4):723-732. doi: 10.1111/jre.13130. Epub 2023 May 2.

Abstract

BACKGROUND AND OBJECTIVE

Mutations in low-density lipoprotein receptor-related protein 5 (LRP5) cause various bone diseases. Several mouse models were generated to study the role of LRP5 in bone development. But most of the studies were confined to the appendicular skeleton. The role of LRP5 in the axial skeleton, especially in the craniofacial skeleton, is largely unknown. The aim of this study was to investigate the craniofacial phenotype with the LRP5 mutation.

METHODS

To understand how LRP5 affects craniofacial bone properties, we analyzed LRP5 high-bone-mass mutant mice carrying the G171V missense mutation (LRP5 ). Quantitative microcomputed tomographic imaging and histomorphometric analyses were used to study craniofacial phenotypes and bone density. Histology, immunohistochemistry, and in vivo fluorochrome labeling were used to study molecular mechanisms.

RESULTS

LRP5 mice showed overall minor changes in the craniofacial bone development but with increased bone mass in the interradicular alveolar bone, edentulous ridge, palatine bone, and premaxillary suture. Elevated osteocyte density was observed in LRP5 mice, along with increased Runx2 expression and unmineralized bone surrounding osteocytes. Meanwhile, LRP5 mice exhibited increased osteoprogenitors, but no significant changes were observed in osteoclasts. This led to a high-bone-mass phenotype, and an increased osteocyte density in the alveolar bone and edentulous ridge.

CONCLUSION

LRP5 mice display increased bone mass in the alveolar bone with minor changes in the craniofacial morphology. Collectively, these data elucidated the important role of LRP5 in axial bone development and homeostasis and provided clues into the therapeutical potential of LRP5 signaling in treating alveolar bone loss.

摘要

背景与目的

载脂蛋白 LRP5 基因突变可导致多种骨骼疾病。为了研究 LRP5 在骨骼发育中的作用,已构建多种小鼠模型,但大多数研究仅限于四肢骨骼。LRP5 在轴骨骼,尤其是颅面骨骼中的作用尚未明确。本研究旨在探究 LRP5 突变对颅面骨骼表型的影响。

方法

为了明确 LRP5 如何影响颅面骨骼特性,我们分析了携带 G171V 错义突变(LRP5 G171V )的 LRP5 高骨量突变小鼠。采用定量微计算机断层扫描成像和组织形态计量学分析研究颅面骨骼表型和骨密度。组织学、免疫组织化学和体内荧光标记法用于研究分子机制。

结果

LRP5 小鼠颅面骨骼整体发育变化较小,但牙槽骨、无牙牙槽嵴、腭骨和前颌骨间骨小梁骨量增加。LRP5 小鼠中观察到骨细胞密度升高,同时 Runx2 表达增加,骨细胞周围有未矿化骨。同时,LRP5 小鼠中破骨细胞前体细胞增加,但破骨细胞无明显变化,导致高骨量表型,牙槽骨和无牙牙槽嵴中骨细胞密度增加。

结论

LRP5 小鼠牙槽骨骨量增加,颅面形态变化较小。这些数据共同阐明了 LRP5 在轴骨骼发育和稳态中的重要作用,并为 LRP5 信号在治疗牙槽骨丢失中的治疗潜力提供了线索。

相似文献

1
The LRP5 high-bone-mass mutation causes alveolar bone accrual with minor craniofacial alteration.
J Periodontal Res. 2023 Aug;58(4):723-732. doi: 10.1111/jre.13130. Epub 2023 May 2.
2
Induction of Lrp5 HBM-causing mutations in Cathepsin-K expressing cells alters bone metabolism.
Bone. 2019 Mar;120:166-175. doi: 10.1016/j.bone.2018.10.007. Epub 2018 Oct 25.
3
The high-bone-mass phenotype of novel transgenic mice with LRP5 A241T mutation.
Bone. 2024 Oct;187:117172. doi: 10.1016/j.bone.2024.117172. Epub 2024 Jun 21.
4
High Bone Mass-Causing Mutant LRP5 Receptors Are Resistant to Endogenous Inhibitors In Vivo.
J Bone Miner Res. 2015 Oct;30(10):1822-30. doi: 10.1002/jbmr.2514.
5
High bone mass in mice expressing a mutant LRP5 gene.
J Bone Miner Res. 2003 Jun;18(6):960-74. doi: 10.1359/jbmr.2003.18.6.960.
7
Missense Mutations in LRP5 Associated with High Bone Mass Protect the Mouse Skeleton from Disuse- and Ovariectomy-Induced Osteopenia.
PLoS One. 2015 Nov 10;10(11):e0140775. doi: 10.1371/journal.pone.0140775. eCollection 2015.
9
10
High-bone-mass-producing mutations in the Wnt signaling pathway result in distinct skeletal phenotypes.
Bone. 2011 Nov;49(5):1010-9. doi: 10.1016/j.bone.2011.07.034. Epub 2011 Aug 9.

引用本文的文献

1
Probiotics Enhance Bone Density and Reduce Inflammation Postalveolar Surgery.
Int Dent J. 2025 Jul 3;75(5):100881. doi: 10.1016/j.identj.2025.100881.

本文引用的文献

1
Type 1 diabetes mellitus leads to gingivitis and an early compensatory increase in bone remodeling.
J Periodontol. 2023 Feb;94(2):277-289. doi: 10.1002/JPER.22-0192. Epub 2023 Jan 19.
2
Wnt/β-catenin Signaling Controls Maxillofacial Hyperostosis.
J Dent Res. 2022 Jul;101(7):793-801. doi: 10.1177/00220345211067705. Epub 2022 Feb 3.
3
LRP5 and LRP6 in Wnt Signaling: Similarity and Divergence.
Front Cell Dev Biol. 2021 May 6;9:670960. doi: 10.3389/fcell.2021.670960. eCollection 2021.
4
Comparative analyses of the soft tissue interfaces around teeth and implants: Insights from a pre-clinical implant model.
J Clin Periodontol. 2021 May;48(5):745-753. doi: 10.1111/jcpe.13446. Epub 2021 Mar 13.
5
Molecular Basis for Craniofacial Phenotypes Caused by Sclerostin Deletion.
J Dent Res. 2021 Mar;100(3):310-317. doi: 10.1177/0022034520963584. Epub 2020 Oct 20.
6
RUNX2-modifying enzymes: therapeutic targets for bone diseases.
Exp Mol Med. 2020 Aug;52(8):1178-1184. doi: 10.1038/s12276-020-0471-4. Epub 2020 Aug 13.
7
RANKL-independent osteoclastogenesis in the SH3BP2 cherubism mice.
Bone Rep. 2020 Mar 27;12:100258. doi: 10.1016/j.bonr.2020.100258. eCollection 2020 Jun.
8
Aberrantly elevated Wnt signaling is responsible for cementum overgrowth and dental ankylosis.
Bone. 2019 May;122:176-183. doi: 10.1016/j.bone.2018.10.023. Epub 2018 Oct 25.
9
Mechanisms of Wnt signaling and control.
Wiley Interdiscip Rev Syst Biol Med. 2018 Sep;10(5):e1422. doi: 10.1002/wsbm.1422. Epub 2018 Mar 30.
10
A Wnt-Responsive PDL Population Effectuates Extraction Socket Healing.
J Dent Res. 2018 Jul;97(7):803-809. doi: 10.1177/0022034518755719. Epub 2018 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验