Suppr超能文献

通过虚拟筛选具有小激子-振动耦合的发光分子进行识别,以实现高颜色纯度和潜在的大激子离域化。

Identification via Virtual Screening of Emissive Molecules with a Small Exciton-Vibration Coupling for High Color Purity and Potential Large Exciton Delocalization.

机构信息

Department of Chemistry, University of Liverpool Liverpool L69 3BX, U.K.

出版信息

J Phys Chem Lett. 2023 May 4;14(17):4119-4126. doi: 10.1021/acs.jpclett.3c00749. Epub 2023 Apr 27.

Abstract

A sequence of quantum chemical computations of increasing accuracy was used in this work to identify molecules with small exciton reorganization energy (exciton-vibration coupling), of interest for light emitting devices and coherent exciton transport, starting from a set of ∼4500 known molecules. We validated an approximate computational approach based on single-point calculations of the force in the excited state, which was shown to be very efficient in identifying the most promising candidates. We showed that a simple descriptor based on the bond order could be used to find molecules with potentially small exciton reorganization energies without performing excited state calculations. A small set of chemically diverse molecules with a small exciton reorganization energy was analyzed in greater detail to identify common features leading to this property. Many such molecules display an A-B-A structure where the bonding/antibonding patterns in the fragments A are similar in HOMO and LUMO. Another group of molecules with small reorganization energy displays instead HOMO and LUMO with a strong nonbonding character.

摘要

在这项工作中,我们使用了一系列越来越精确的量子化学计算来确定具有小激子重组能(激子-振动耦合)的分子,这些分子对于发光器件和相干激子输运感兴趣,其起始集合为约 4500 个已知分子。我们验证了一种基于激发态单点力计算的近似计算方法,该方法在识别最有前途的候选者方面非常有效。我们表明,基于键序的简单描述符可用于找到具有潜在小激子重组能的分子,而无需进行激发态计算。我们更详细地分析了一小部分具有较小激子重组能的化学多样性分子,以确定导致这种性质的常见特征。许多这样的分子显示出 A-B-A 结构,其中片段 A 中的成键/反键模式在 HOMO 和 LUMO 中相似。另一组具有小重组能的分子则显示出 HOMO 和 LUMO 具有很强的非键性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b8/10165648/5e5d09a81912/jz3c00749_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验