Am Nat. 2023 May;201(5):639-658. doi: 10.1086/723490. Epub 2023 Mar 30.
AbstractHost-pathogen models usually explain the coexistence of pathogen strains by invoking population structure, meaning host or pathogen variation across space or individuals; most models, however, neglect the seasonal variation typical of host-pathogen interactions in nature. To determine the extent to which seasonality can drive pathogen coexistence, we constructed a model in which seasonal host reproduction fuels annual epidemics, which are in turn followed by interepidemic periods with no transmission, a pattern seen in many host-pathogen interactions in nature. In our model, a pathogen strain with low infectiousness and high interepidemic survival can coexist with a strain with high infectiousness and low interepidemic survival: seasonality thus permits coexistence. This seemingly simple type of coexistence can be achieved through two very different pathogen strategies, but understanding these strategies requires novel mathematical analyses. Standard analyses show that coexistence can occur if the competing strains differ in terms of , the number of new infections per infectious life span in a completely susceptible population. A novel mathematical method of analyzing transient dynamics, however, allows us to show that coexistence can also occur if one strain has a lower than its competitor but a higher initial fitness λ, the number of new infections per unit time in a completely susceptible population. This second strategy allows coexisting pathogens to have quite similar phenotypes, whereas coexistence that depends on differences in values requires that coexisting pathogens have very different phenotypes. Our novel analytic method suggests that transient dynamics are an overlooked force in host-pathogen interactions.
摘要宿主-病原体模型通常通过调用种群结构来解释病原体菌株的共存,这意味着宿主或病原体在空间或个体上的变化;然而,大多数模型忽略了自然界中宿主-病原体相互作用的季节性变化。为了确定季节性在多大程度上可以驱动病原体共存,我们构建了一个模型,其中季节性的宿主繁殖为每年的流行病提供燃料,然后是没有传播的流行病间隔期,这是自然界中许多宿主-病原体相互作用中常见的模式。在我们的模型中,一种传染性低、流行病间隔期生存能力高的病原体菌株可以与一种传染性高、流行病间隔期生存能力低的菌株共存:因此,季节性允许共存。这种看似简单的共存类型可以通过两种非常不同的病原体策略来实现,但要理解这些策略需要新的数学分析。标准分析表明,如果竞争菌株在 ,即在完全易感人群中每感染生命期的新感染数量方面存在差异,那么共存就可以发生。然而,一种分析瞬态动力学的新数学方法允许我们表明,如果一种菌株的 低于其竞争对手,但初始适应性 λ较高,即完全易感人群中每单位时间的新感染数量,那么共存也可以发生。第二种策略允许共存的病原体具有非常相似的表型,而依赖于 值差异的共存则要求共存的病原体具有非常不同的表型。我们的新分析方法表明,瞬态动力学是宿主-病原体相互作用中被忽视的力量。