Messenger Daniel, Dwyer Greg, Dukic Vanja
Department of Applied Mathematics, University of Colorado, Boulder, CO, USA.
Department of Ecology & Evolution, University of Chicago, Chicago, IL 60637, USA.
J R Soc Interface. 2024 Dec;21(221):20240376. doi: 10.1098/rsif.2024.0376. Epub 2024 Dec 18.
Species subject to predation and environmental threats commonly exhibit variable periods of population boom and bust over long timescales. Understanding and predicting such behaviour, especially given the inherent heterogeneity and stochasticity of exogenous driving factors over short timescales, is an ongoing challenge. A modelling paradigm gaining popularity in the ecological sciences for such multi-scale effects is to couple short-term continuous dynamics to long-term discrete updates. We develop a data-driven method utilizing weak-form equation learning to extract such hybrid governing equations for population dynamics and to estimate the requisite parameters using sparse intermittent measurements of the discrete and continuous variables. The method produces a set of short-term continuous dynamical system equations parametrized by long-term variables, and long-term discrete equations parametrized by short-term variables, allowing direct assessment of interdependencies between the two timescales. We demonstrate the utility of the method on a variety of ecological scenarios and provide extensive tests using models previously derived for epizootics experienced by the North American spongy moth ().
遭受捕食和环境威胁的物种通常在长时间尺度上呈现出种群数量波动的不同时期。理解和预测此类行为,尤其是考虑到短期时间尺度上外部驱动因素固有的异质性和随机性,是一项持续存在的挑战。在生态科学中,一种因这种多尺度效应而日益流行的建模范式是将短期连续动态与长期离散更新相结合。我们开发了一种数据驱动方法,利用弱形式方程学习来提取此类种群动态的混合控制方程,并使用离散和连续变量的稀疏间歇性测量来估计所需参数。该方法生成了一组由长期变量参数化的短期连续动态系统方程,以及由短期变量参数化的长期离散方程,从而能够直接评估两个时间尺度之间的相互依赖性。我们在各种生态场景中展示了该方法的实用性,并使用先前为北美舞毒蛾经历的动物流行病推导的模型进行了广泛测试。