Nuffield professor of primary care health sciences, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford.
Public Health England, London.
Br J Gen Pract. 2023 May 25;73(731):e435-e442. doi: 10.3399/BJGP.2022.0235. Print 2023 Jun.
People with multiple health conditions are more likely to have poorer health outcomes and greater care and service needs; a reliable measure of multimorbidity would inform management strategies and resource allocation.
To develop and validate a modified version of the Cambridge Multimorbidity Score in an extended age range, using clinical terms that are routinely used in electronic health records across the world (Systematized Nomenclature of Medicine - Clinical Terms, SNOMED CT).
Observational study using diagnosis and prescriptions data from an English primary care sentinel surveillance network between 2014 and 2019.
In this study new variables describing 37 health conditions were curated and the associations modelled between these and 1-year mortality risk using the Cox proportional hazard model in a development dataset ( = 300 000). Two simplified models were then developed - a 20-condition model as per the original Cambridge Multimorbidity Score and a variable reduction model using backward elimination with Akaike information criterion as the stopping criterion. The results were compared and validated for 1-year mortality in a synchronous validation dataset ( = 150 000), and for 1-year and 5-year mortality in an asynchronous validation dataset ( = 150 000).
The final variable reduction model retained 21 conditions, and the conditions mostly overlapped with those in the 20-condition model. The model performed similarly to the 37- and 20-condition models, showing high discrimination and good calibration following recalibration.
This modified version of the Cambridge Multimorbidity Score allows reliable estimation using clinical terms that can be applied internationally across multiple healthcare settings.
患有多种健康状况的人更有可能出现较差的健康结果和更大的护理及服务需求;可靠的多病种衡量方法将为管理策略和资源分配提供信息。
开发和验证一种经过扩展年龄范围的剑桥多病种评分的修改版本,使用在全球范围内电子健康记录中常规使用的临床术语(系统命名法医学-临床术语,SNOMED CT)。
在 2014 年至 2019 年期间,使用来自英国初级保健监测网络的诊断和处方数据进行观察性研究。
在这项研究中,描述了 37 种健康状况的新变量,并使用 Cox 比例风险模型在开发数据集(=300000)中对这些变量与 1 年死亡率风险之间的关联进行建模。然后开发了两种简化模型 - 一种是按照原始剑桥多病种评分的 20 种病症模型,另一种是使用向后消除法和以 Akaike 信息准则作为停止准则的变量减少模型。在同步验证数据集(=150000)中比较和验证了 1 年死亡率的结果,并在异步验证数据集(=150000)中比较和验证了 1 年和 5 年死亡率的结果。
最终的变量减少模型保留了 21 种病症,这些病症与 20 种病症模型中的病症大多重叠。该模型的表现与 37 种病症和 20 种病症模型相似,在重新校准后显示出较高的区分度和良好的校准度。
这种经过修改的剑桥多病种评分版本允许使用可以在多个医疗保健环境中在国际上应用的临床术语进行可靠的估计。