Suppr超能文献

机器学习工具和综合 OMICS 在代谢性遗传病的筛查和诊断中的应用。

Application of machine learning tools and integrated OMICS for screening and diagnosis of inborn errors of metabolism.

机构信息

Department of Biochemical Genetics, YODA Lifeline Diagnostics Pvt. Ltd, Ameerpet, Hyderabad, 500016, India.

出版信息

Metabolomics. 2023 May 3;19(5):49. doi: 10.1007/s11306-023-02013-x.

Abstract

INTRODUCTION

Tandem mass spectrometry (TMS) has emerged an important screening tool for various metabolic disorders in newborns. However, there is inherent risk of false positive outcomes. Objective To establish analyte-specific cutoffs in TMS by integrating metabolomics and genomics data to avoid false positivity and false negativity and improve its clinical utility.

METHODS

TMS was performed on 572 healthy and 3000 referred newborns. Urine organic acid analysis identified 23 types of inborn errors in 99 referred newborns. Whole exome sequencing was performed in 30 positive cases. The impact of physiological changes such as age, gender, and birthweight on various analytes was explored in healthy newborns. Machine learning tools were used to integrate demographic data with metabolomics and genomics data to establish disease-specific cut-offs; identify primary and secondary markers; build classification and regression trees (CART) for better differential diagnosis; for pathway modeling.

RESULTS

This integration helped in differentiating B12 deficiency from methylmalonic acidemia (MMA) and propionic acidemia (Phi coefficient=0.93); differentiating transient tyrosinemia from tyrosinemia type 1 (Phi coefficient=1.00); getting clues about the possible molecular defect in MMA to initiate appropriate intervention (Phi coefficient=1.00); to link pathogenicity scores with metabolomics profile in tyrosinemia (r2=0.92). CART model helped in establishing differential diagnosis of urea cycle disorders (Phi coefficient=1.00).

CONCLUSION

Calibrated cut-offs of different analytes in TMS and machine learning-based establishment of disease-specific thresholds of these markers through integrated OMICS have helped in improved differential diagnosis with significant reduction of the false positivity and false negativity rates.

摘要

简介

串联质谱(TMS)已成为新生儿各种代谢紊乱的重要筛查工具。然而,其存在假阳性结果的固有风险。目的 通过整合代谢组学和基因组学数据来建立 TMS 中分析物特异性截止值,以避免假阳性和假阴性,并提高其临床实用性。

方法

对 572 名健康新生儿和 3000 名转诊新生儿进行 TMS 检测。尿有机酸分析在 99 名转诊新生儿中发现了 23 种先天性代谢错误。对 30 例阳性病例进行了全外显子组测序。在健康新生儿中探索了年龄、性别和出生体重等生理变化对各种分析物的影响。使用机器学习工具将人口统计学数据与代谢组学和基因组学数据相结合,以建立疾病特异性截止值;识别主要和次要标志物;建立分类回归树(CART)以进行更好的鉴别诊断;进行途径建模。

结果

这种整合有助于区分 B12 缺乏症与甲基丙二酸血症(MMA)和丙酸血症(Phi 系数=0.93);区分短暂性酪氨酸血症与酪氨酸血症 1 型(Phi 系数=1.00);获得 MMA 中可能分子缺陷的线索,以启动适当的干预(Phi 系数=1.00);将致病性评分与酪氨酸血症的代谢组学特征联系起来(r2=0.92)。CART 模型有助于建立尿素循环障碍的鉴别诊断(Phi 系数=1.00)。

结论

通过整合 OMICS,对 TMS 中不同分析物的校准截止值和基于机器学习的这些标志物的疾病特异性阈值的建立,有助于提高鉴别诊断的准确性,同时显著降低假阳性率和假阴性率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验