Suppr超能文献

机器学习在遗传性代谢疾病新生儿筛查中的意义。

The significance of machine learning in neonatal screening for inherited metabolic diseases.

作者信息

Yang Xiangchun, Ding Shuxia, Zhang Jianping, Hu Zhuojie, Zhuang Danyan, Wang Fei, Wu Shanshan, Chen Changshui, Li Haibo

机构信息

The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo City, Zhejiang, China.

Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China.

出版信息

Front Pediatr. 2024 Mar 20;12:1366891. doi: 10.3389/fped.2024.1366891. eCollection 2024.

Abstract

BACKGROUND

Neonatal screening for inherited metabolic diseases (IMDs) has been revolutionized by tandem mass spectrometry (MS/MS). This study aimed to enhance neonatal screening for IMDs using machine learning (ML) techniques.

METHODS

The study involved the analysis of a comprehensive dataset comprising 309,102 neonatal screening records collected in the Ningbo region, China. An advanced ML system model, encompassing nine distinct algorithms, was employed for the purpose of predicting the presence of 31 different IMDs. The model was compared with traditional cutoff schemes to assess its diagnostic efficacy. Additionally, 180 suspected positive cases underwent further evaluation.

RESULTS

The ML system exhibited a significantly reduced positive rate, from 1.17% to 0.33%, compared to cutoff schemes in the initial screening, minimizing unnecessary recalls and associated stress. In suspected positive cases, the ML system identified 142 true positives with high sensitivity (93.42%) and improved specificity (78.57%) compared to the cutoff scheme. While false negatives emerged, particularly in heterozygous carriers, our study revealed the potential of the ML system to detect asymptomatic cases.

CONCLUSION

This research provides valuable insights into the potential of ML in pediatric medicine for IMD diagnosis through neonatal screening, emphasizing the need for accurate carrier detection and further research in this domain.

摘要

背景

串联质谱(MS/MS)彻底改变了遗传性代谢疾病(IMD)的新生儿筛查。本研究旨在使用机器学习(ML)技术加强IMD的新生儿筛查。

方法

该研究对中国宁波地区收集的309,102份新生儿筛查记录组成的综合数据集进行了分析。采用了一个包含九种不同算法的先进ML系统模型来预测31种不同IMD的存在。将该模型与传统的临界值方案进行比较以评估其诊断效能。此外,对180例疑似阳性病例进行了进一步评估。

结果

与初始筛查中的临界值方案相比,ML系统的阳性率显著降低,从1.17%降至0.33%,最大限度地减少了不必要的召回和相关压力。在疑似阳性病例中,与临界值方案相比,ML系统识别出142例真阳性,具有高灵敏度(93.42%)和更高的特异性(78.57%)。虽然出现了假阴性,特别是在杂合子携带者中,但我们的研究揭示了ML系统检测无症状病例的潜力。

结论

本研究为ML在儿科学中通过新生儿筛查诊断IMD的潜力提供了有价值的见解,强调了准确检测携带者的必要性以及该领域进一步研究的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c09e/10993727/2318752e91b2/fped-12-1366891-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验